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EXECUTIVE SUMMARY

A proof-of-concept groundwater model postaudit period for the Central Nevada Test
Area (CNTA), site of the Faultless underground nuclear test, was begun with the drilling of
three monitoring/validation wells in 2005. This five-year period is prescribed by a Federal
Facility Agreement and Consent Order to establish if the groundwater model developed for
the site is capable of producing meaningful results with an acceptable degree of uncertainty.
The wells are denoted as MV-1, MV-2, and MV-3, with locations selected to meet monitoring
objectives and provide data for model validation. Completion depths for the wells varied from
1115 to 1286 m below land surface. A well and two piezometers were constructed in each
borehole.

The wells provide lithologic data, water level measurements, hydraulic conductivity
data, and water chemistry data for comparison to the groundwater flow model. After
analyzing and interpreting the data, 19 real-number validation targets and 60 categorical
values (related to lithology) were identified. The real number targets include nine head
measurements, four hydraulic conductivity measurements, and six inferred (or computed)
vertical head gradients in the three wells. The categorical data include 21 model layers in
MV-1, where field data indicate the type of geologic unit (i.e., alluvium, tuffaceous
sediments, or densely welded tuff) for each layer, 18 layers in MV-2, and 21 layers in MV-3,
with known categories identified from the resistivity logs of these wells.

These data sets are used to test different model components separately and to also test
the model as a whole. The model validation approach detailed in the Corrective Action
Decision Document/Corrective Action Plan (CADD/CAP) for CNTA is implemented and
step-by-step analysis is performed using a variety of statistical tests. Goodness-of-fit
measures, linear regression analysis, hypothesis testing, a stochastic perturbation approach to
validation, model structure evaluations, and lithologic comparisons are all performed for
evaluating the model. The acceptance criteria presented in the CADD/CAP are also applied to
the model.

Most of the tests and evaluations indicate the model has a major deficiency. In
particular, measured heads are much higher than the model predicted at the elevation of the
nuclear test, and are also higher in the alluvium. The field data indicate an upward vertical
gradient in the upper portion of the model domain, whereas the model predicted vertical
downward gradients throughout the domain at the MV-1 and MV-3 locations.

The model performed well in a number of respects. Hydraulic conductivity data fit
within the distributions used in the model with the field values close to the modal values
(highest frequency values) of the model distributions. However, the field data indicate much
lower hydraulic conductivities than the values used in the model for the densely welded tuff.
Lithology data are similar to the model assigned categories for most of the logged sections in
the three wells. Water chemistry data indicate no tritium above background levels, thereby
supporting the transport model finding that no far-field transport is expected to occur in the
1,000 year regulatory time frame.

A rigorous quantitative analysis relies on a number of statistical tests but lacks the
value of hydrogeologic expertise and a broader view of model attributes and their
performance. Therefore, a holistic model evaluation is conducted where model assumptions
are reviewed in light of the MV data. The overall assessment of this holistic evaluation is that
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the main conceptual components of the model are valid, but near-field conditions that were
deliberately neglected in the original model are responsible for the discrepancies between the
model and the validation data. The effects of the nuclear test and surrounding faults likely
account for the observations in the MV wells. A preliminary revised model is developed and
used to test the hypothesis that near-field conditions and faults can cause persistence of the
elevated pressure pulse (the high heads observed in the MV wells). The revised model
indicates that if the faults are barriers to flow, they could lead to the persistence of the
elevated heads.

The revised model is a simplified representation of the system. However, it shows the
potential for reproducing the head and flow patterns observed in the MV wells. Adding the
necessary details (e.g., refining the model discretization, including heterogeneity,
conditioning on all available data, etc.) may result in a model capable of reasonably
representing the near-field conditions. Such a model would necessarily introduce significant
uncertainties by virtue of the absence of data regarding the nuclear test effects and fault
geometry and properties, unless near-field data are collected. Near-field data collection and
model revision to incorporate nuclear-test effects on the flow system are major efforts that
may or may not be needed to meet the regulatory objectives of the site. This is a decision for
the U.S. Department of Energy and Nevada Division of Environmental Protection.
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1.0 INTRODUCTION

The Central Nevada Test Area (CNTA) is a U.S. Department of Energy (DOE) site
undergoing environmental restoration. The CNTA is located about 95 km northeast of
Tonopah, Nevaada, and 175 km southwest of Ely, Nevada (Figure 1.1). It was the site of the
Faultless underground nuclear test conducted by the U.S. Atomic Energy Commission
(DOE’s predecessor agency) in January 1968. The purposes of this test were to gauge the
seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley
(outside the Nevada Test Site [NTS]) and to determine the suitability of the site for future
large detonations. The yield of the Faultless underground nuclear test was between 200
kilotons and 1 megaton (DOE, 2000). A three-dimensional flow and transport model was
created for the CNTA site (Pohlmann et al., 1999) and determined acceptable by DOE and the
Nevada Division of Environmental Protection (NDEP) for predicting contaminant boundaries
for the site.

Figure 1.1. Location map of the Central Nevada Test Area in the state of Nevada.
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Hassan (2003a, 2004a, 2004b) proposed a validation approach for stochastic
groundwater models in general and for the CNTA model in particular. The approach
addresses some of the important issues recognized in previous validation studies, conferences,
and symposia as crucial to the process. The integrated approach uses a number of tools for
evaluating the predictive CNTA model. This is particularly critical in radionuclide transport
models such as the CNTA model, since only a few aspects of the transport modeling results
can be tested because the predictions of the model extend a thousand years into the future and
no data can be used at this time scale. The key strategy is to focus on evaluating other model
elements (e.g., geologic model, model structure, and flow model) using validation data to
evaluate transport predictions and reduce their uncertainty.

Model validation will not eliminate uncertainty from the model predictions; some
uncertainty is inherent and irreducible in models of subsurface processes. Monitoring is the
final step in addressing uncertainty in environmental problems. Groundwater monitoring not
only serves to build confidence that the system is performing as predicted, it acknowledges
the uncertainties inherent in the modeling process and the possibility, however remote, of
unexpected outcomes.

The details of the CNTA numerical model (Pohlmann et al., 1999, 2000), the
validation approach (Hassan 2003a), and the monitoring network design approach (Hassan
2003b) were included in the CNTA Corrective Action Decision Document / Corrective
Action Plan (CADD/CAP) together with other relevant details and submitted to the state
regulator (DOE, 2004). The CADD/CAP for CNTA was subsequently approved by the State
of Nevada in December 2004. Drilling and data collection at the three wells occurred during
2005 and 2006. Details of drilling the three monitoring/validation wells (MV-1, MV-2, and
MV-3; Figure 1.2) can be found in DOE (2006) and hydrologic data and analyses are
presented by Lyles et al. (2006). The wells were drilled and completed to collect geologic,
geophysical, hydrologic, and geochemical data in support of the validation and monitoring
efforts for the CNTA site. Actual completion depths were 1,250.3 m for MV-1, 1,115.6 m for
MV-2, and 1,286.3 m for MV-3.

This report addresses the use of the data collected from MV-1, MV-2, and MV-3 in
conducting the model validation process for CNTA as detailed in Hassan (2003a). Following
this introduction, the report is organized as follows. Section 2 presents a brief review of the
validation process and the relevant acceptance criteria. The detailed validation analysis is then
presented in Section 3 along with a more qualitative, broader-view evaluation of the model.
Section 4 discusses the implications of the validation results and the vision for the forward
steps in the corrective action process for the site. The report is summarized and the main
conclusions are discussed in Section 5.
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MV-1


MV-3



MV-2

Figure 1.2. Faultless land withdrawal (dashed line) showing surface ground zero and nearby wells.
The MV wells are the monitoring-validation wells constructed in 2005.

2.0 VALIDATION PROCESS AND ACCEPTANCE CRITERIA

Even the simplest deterministic subsurface model is challenging to validate (Hassan,
2004b). The validation approach for CNTA accounts for the stochastic nature of the Faultless
model and evaluates the large number of realizations present in the Monte Carlo analysis
(Hassan, 2004a). A brief review of the proposed validation procedure is presented below.

2.1 Proposed Step-by-step Procedure for CNTA Model Validation

Figure 2.1 describes the steps of the process to validate the model predictions. The
validation steps are described below.

Step 1: Identify the data needed for validation, and the number of wells and their location.
The first stage of the monitoring strategy was implemented to help select the well locations
(Hassan 2003b) shown in Figure 1.2.
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&
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Hypothesis testing
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and failure possibility (P5)
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and validation tests for current realization
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and subjective judgment

Did validation results
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(e.g. , update model input
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Stop

No

No

No
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Yes

Yes
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Step 2
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Step 4

Step 5

Step 6a

Step 6b

Step 8

Step 7

Step 6

Step 7a

Step 7b

Start analysis

Amend CAP

Steps using pre-
validation data only

Produce contaminant boundary with the satisfactory
realizations

Will refining model input
improve performance?

Yes

No

Figure 2.1. Details of the proposed model validation process for the CNTA model with the
acceptance criteria measures (P1 through P5) explained in Section 2.2. This plan has been
slightly modified from the one in the CADD/CAP (DOE, 2004).
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Step 2: Install the wells and obtain the largest amount of data possible from the wells. The
data should be diverse to be able to test the model structure, input, and output.

Step 3: Evaluate the model calibration accuracy for each individual realization using
goodness-of-fit measures and using the calibration data only (prevalidation data; the data used
to construct the original model).

Step 4: Perform the different validation tests to evaluate the different submodels and
components of the model. Goodness-of-fit tests using the validation data (previously, it was
calibration data) can be used for the heads as well as hypothesis testing. Data will also be used
to check the occurrence of failure scenarios (e.g., whether tritium exists farther from the
cavity than is predicted by any realization of the stochastic CNTA model [Pohlmann et al.,
1999; Pohll et al., 2003]).

Step 5: Link the different results of the calibration accuracy evaluation (Step 3) and the
validation tests (Step 4) for all realizations and sort the realizations in terms of their adequacy
and closeness to the field data. The objective is to filter out realizations that show a major
deviation or inadequacy in many of the tested aspects and focus on those that “passed” the
majority of the tests, with the passing score determined using hydrogeologic expertise and
subjective assessment. As a result of this filtering, the range of output uncertainty is reduced
and the subsequent effort can be focused on the most representative realizations/scenarios.

Step 6: Results of Step 5 guide the decision as to whether there is a sufficient number of
acceptable realizations (thus building confidence in the original model) or insufficient number
of acceptable realizations, indicating that the original model needs adjustment.

Step 6a: If the number of unacceptable realizations is very large compared to the total number
of model realizations, it indicates that either the model has a major deficiency or the input is
not correct. In the latter case, the model may be conceptually good, but the input parameter
distributions may be skewed. Generating more realizations and keeping those that fit the
validation data can shift the distribution to the proper position. This can be done using the
existing model without conditioning or using any of the new validation data. If the model has
a major conceptual problem, generating additional realizations will not correct it and
continued failure per the validation criteria will be obvious. In this case, the answer to the
question of whether refining model input distributions may improve model performance is no,
and Step 6a leads to Step 7.

Step 6b: If the number of acceptable realizations is sufficient, it indicates the model does not
have conceptual problems. This determination will be made according to a number of metrics
described in Section 2.2. Based on the acceptable realizations, a contaminant boundary is
calculated and compared to the original contaminant boundary. This comparison will be
presented to decision makers for evaluation in Step 7.

Step 7: Once the model performance has been evaluated per the acceptance criteria, the
model sponsors and regulators have to answer the last question in Figure 2.1. This question
will determine whether the validation results meet the regulatory objectives or not. This is the
trigger point that could lead to significant revision of the original model.

Step 7a: If the results do not meet regulatory requirements, the left-hand-side path in Figure
2.1 begins with an evaluation of the investigation strategy, consistent with the process flow
diagram in Appendix VI of the Federal Facilities Advice and Consent Order (FFACO). If the
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original strategy is deemed sound, a new iteration of model development begins, using the
data originally collected for validation, and steps 1 to 6 are eventually repeated. If the original
strategy is deemed unsound, a new strategy will be developed. In either case, the CADD/CAP
will be amended before execution.

Step 7b: If the results meet regulatory requirements, validation is deemed sufficient, the
model is considered adequate for its intended use, and the process proceeds to the long-term
monitoring plan development for the site closure.

While there are no guarantees of success (attaining a conclusive outcome about model
performance), the combined presence of the different results and evaluations improves the
odds that one can make a good decision about the model performance.

2.2 Acceptance Criteria

According to the validation plan (Figure 2.1), the first set of analyses using the
validation data will yield results that are evaluated to determine the path forward. The first
“if” statement in the validation process pertains to whether there is a sufficient number of
acceptable realizations that are consistent with the field data used for calibration (old) and
validation (new). This determination will be based on five criteria, with the decision made in a
hierarchical manner. The five criteria are:

1. Individual realization scores (Sj, j = 1, …, number of realizations) are computed based
on how well each realization fits the validation data, and the first criterion, P1, is the
percentage of these scores that exceeds a certain reference value.

2. The second criterion, P2, represents the number of validation targets where field data
fit within the inner 95 percent of the target probability distribution as used in the
model.

3. The third criterion, P3, relies on hypothesis testing based on the stochastic perturbation
approach of Luis and McLaughlin (1992) as described in detail in Hassan (2003a).

4. The results of linear regression analysis and hypothesis testing represent the fourth
criterion, P4.

5. The results of the correlation analysis where the log-conductivity variance is plotted
against the head variance for the targeted locations and the resulting plot for the model
is compared against the field validation data give the fifth criterion, P5.

The hierarchical approach to making the above determination is described by a
decision tree (Figure 2.2). The process starts with evaluating Sj and determining the
percentage of realizations with scores above the reference value, P1. If P1 is more than
40 percent, the number of acceptable realizations is deemed sufficient. If it is less than 40
percent, then the second criterion, P2, is used (Figure 2.2). If P1 is between 30 and 40 percent
and P2 is between 40 and 50 percent or if P1 is less than 30 percent but P2 is greater than
50 percent, the number of acceptable realizations is deemed sufficient. If P1 is less than
30 percent and P2 is less than 40 percent, then the remaining three measures, P3, P4, and P5,
are used to determine whether the model needs revision or whether more realizations can be
generated to replace some of the current realizations. In this latter case, it may be that the
model is conceptually good but the input parameter distribution is skewed and by generating
more realizations and keeping the ones that fit the above criteria, the distribution attains the
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proper position. This can be done using the existing model without conditioning or using any
of the new validation data (i.e., no additional calibration). The rationale for selecting the
above thresholds (30 percent to 40 percent for P1 and 40 percent to 50 percent for P2) is
described through a detailed example in Hassan (2003b).

Percentage of realizations where
S

j
is larger than reference value

(P1)

> 40% < 30%

> 50% Between 40% and 50%

Between 30% and 40%

The number
with satisfactory
score is
sufficient Percentage of

validation targets
within the inner 95%

of the pdf (P2)

The number
with satisfactory
scores is
sufficient

The number
with satisfactory
scores is
sufficient

< 40%

The number
with satisfactory
scores is not
sufficient and
the RHS loop on
the validation
plan takes effect

Percentage of
validation targets

within the inner 95%
of the pdf (P2)

> 50%

The number
with satisfactory
scores is
sufficient

Between 40% and 50%

The number
with satisfactory
scores is not
sufficient and
the RHS loop on
the validation
plan takes effect

< 40%

P
3
, P

4
, and P

5
evaluation

Model needs
revision

Start Here

Figure 2.2. A decision tree chart showing how the first decision (Step 6) in the validation process is
made and the criteria for determining the sufficiency of the number of acceptable
realizations.

3.0 VALIDATION ANALYSIS FOR CNTA

The first step in the validation process, identification of data needs, was documented
in the CADD/CAP. The aspects of the Faultless flow and transport model selected as
validation targets are those considered key for effective monitoring and for estimating the
contaminant boundary. The validation targets selected for CNTA, as presented in the
CADD/CAP, are as follows:

1. Hydraulic head

2. Presence or absence of densely welded tuff near emplacement location

3. Contaminant transport predictions (confirming absence of transport above maximum
contaminant levels [MCLs])

4. Hydraulic conductivity range
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Each of these is important for different reasons. Comparing hydraulic head values
confirms flow directions. Determining whether or not the densely welded tuff exists near the
emplacement horizon is important because only those simulations with densely welded tuff
predict any significant transport. Confirming the transport predictions (essentially ruling out
fast pathways) is desirable, despite the low probability of detectable transport predicted by the
model. Comparing the range of hydraulic conductivity in new wells with that used in the
model will support the slow predicted velocities.

The second step in the validation process (data collection) was accomplished with a
drilling and testing program designed to meet the data objectives (DOE, 2006; Lyles et al.,
2006). For the first target, hydraulic head was measured in units distributed both laterally and
vertically around the test. These measurements were performed in the well bore and in
piezometers installed in the annular space. For the second target (presence or absence of
welded tuff), the lithologic section in the three wells was logged (by evaluation of cuttings
and geophysical tools). For the contaminant transport target, samples of groundwater were
collected and analyzed for Faultless-related contaminants, principally tritium. General
groundwater characteristics were determined to confirm conditions used in the transport
model. These included major ions, silica, pH, EC, temperature, and stable isotopes of oxygen
and hydrogen. For the final target (the hydraulic conductivity range), aquifer tests were
performed in the wells, and in one of the piezometer tubes in MV-2.

Following the collection of the validation data from the three MV wells, steps 3
through 7 of the validation process were performed and are documented here. To organize the
analysis and the discussion of the results, a summary is first presented of the data relevant to
the validation process, along with discussion of data interpretation issues and conversion to
model input or output parameters. The data are linked to the model domain and its discretized
cells so that comparisons between field data and model simulation can be made. Steps 3
through 7 of the validation process are then implemented and the results are discussed.

3.1 Validation Data and Interpretation

The MV well locations are as follows (all in NAD27 Nevada State Plane coordinates
system): MV-1 is at 192369.3 m easting and 431789.9 m northing, MV-2 is at 190962.3 m
easting and 430579.0 m northing, and MV-3 is at 191652.3 m easting and 431745.7 m
northing. Based on the locations, the corresponding column, i, (easting) and row, j, (northing)
for the three wells in the model coordinate system are (i = 50, j = 50) for MV-1, (i = 22,
j = 26) for MV-2, and (i = 36, j = 49) for MV-3 (Figure 3.1). This association allows the
model input or output parameters at the locations of the validation wells to be extracted from
the model realizations.

The validation data can be categorized into two sets. One set pertains to the model
input parameters and the other pertains to the model-produced output. Lithology-related data
(i.e., resistivity logs and identification of the densely welded tuff units) and hydraulic
conductivity data belong to the first set, whereas measured heads and “inferred” gradients
belong to the second set.

Resistivity was measured using downhole logging tools during the advancement of the
boreholes. A resistivity log was not collected from the upper portion of well MV-3 (from land
surface to a depth of 321 m). This section was in alluvium, as confirmed by geologic
evaluation of drill cuttings.
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Figure 3.1. Map view of the model used for the calculation of Faultless contaminant boundaries. The
model grid cells and the old as well as new wells are shown on the model domain.

Two aspects determine the lithology profile relevant to validation at each borehole; the
location of the contact between the alluvium (flow category 1 in the 1999 model) and
tuffaceous sediments (flow category 2) and the existence of densely welded tuff (flow
Category 3). The base of the alluvium was determined by lithologic inspection (DOE, 2006).
This determines the interface between flow category 1 and the other two flow categories
associated with volcanic rock. Within the volcanic interval, the determination between flow
categories 2 and 3 is based on resistivity data. A threshold of 30 ohm-m is used to identify
densely welded tuff sections (i.e., sections exhibiting resistivity values higher than
30 ohm-m). To associate the identified densely welded tuff sections with model cells (or
layers, k) in the original model, the resistivity data for each borehole are upscaled to the 50-m
scale of the model using a simple 50 percent rule (Pohlmann et al., 1999). A cell was
considered to belong to flow Category 3 (densely welded tuff) if 50 percent or more of the
vertical 50 m cell interval had densely welded tuff present (identified from resistivity
data). However, an exception to this rule was made for HTH-1 in the original model where
the densely welded tuff zone identified on the HTH-1 litholog was manually assigned to flow
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Category 3 even though resistivity exceeded 30 ohm-m for less than 2 m (4 percent of the
model cells). This was the only exception made to the rule in the 1999 model.

The assignment of flow Category 3 to model cells based on the MV resistivity logs
follows a slightly different rule compared to the 1999 model. Due to the importance of the
densely welded tuff and the critical role it plays in the transport simulations, a 25 percent rule
is applied where model cells are assigned to Category 3 if resistivity exceeded 30 ohm-m in
25 percent of the cell thickness. Spikes in the resistivity logs (very high resistivity in a thin
section of the log) are ignored.

Figure 3.2 displays the resistivity logs for the three wells and the identification of the
densely welded tuff intervals. Applying the 25 percent rule to MV-1 results in one model
layer, layer 8, at the well location being assigned as densely welded tuff. Validation data
indicate that layers 13 and 14 from MV-2 and layers 7 and 9 from MV-3 are densely welded
tuff. Therefore, in model coordinates cells, (i = 50, j = 50, k = 8), (i = 22, j = 26, k = 13 and
14) and (i = 36, j = 49, k = 7 and 9) belong to flow category 3, the densely welded tuff.

Figure 3.2. Resistivity logs from the three MV wells showing the determination of the densely
welded tuff (DWT) sections and the association with model layers (k indicates model
layer).
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Well purging, water level monitoring, and aquifer testing are detailed by Lyles et al.
(2006). Lithium bromide was added to drilling fluids during the drilling of the MV wells. The
low hydraulic conductivity of the aquifers required a lengthy bromide purge period. MV-1
and MV-3 produced less than 1 gallon per minute (GPM); pump limitations only allowed the
wells to be pumped for a few hours before the pump controller would shut off the pump.
Therefore, the wells were pumped once weekly for several months until the bromide was less
then 1 milligram per liter (mg/L). MV-2 produces about 3 GPM and could sustain pumping
for about 6 hours; it was also pumped weekly until bromide levels were less then 1 mg/L.

Once well development at each MV well was completed, transducers were installed in
the lower piezometer and main well. Campbell Scientific, Inc., CR-10X dataloggers were
used to measure Geokon vibrating wire transducers; 10 PSI transducers were installed in the
piezometers and 500 PSI transducers were used in the main wells during aquifer testing.
Flowmeters measured the discharge during the bromide purging and during the aquifer tests.
Periodic fluid level measurements were made in the upper piezometers.

Aquifer tests were performed in each MV well once the bromide purging was
complete. Water level data from the aquifer tests and from the bromide purging were used to
compute aquifer hydraulic conductivity and transmissivity. Each of the MV wells tested a
densely welded tuff intercepted by the main well screen. The hydraulic conductivity of the
densely welded tuff intervals in the MV wells is substantially lower than that reported for
other densely welded tuff units in the region.

Given that the screened interval and the surrounding filter pack extend through more
than one model cell at each well or piezometer, assigning head, h, and hydraulic conductivity,
K, measurements to model cells is not straightforward. Often the filter pack interval is
selected for head measurements since under ambient groundwater flow conditions heads will
tend to be a composite of the entire section. But when vertical gradients are present as is the
case for Faultless, assigning the head measurement to the entire section poses a problem. By
choosing an interval covering multiple cells, the vertical gradient is forced to be zero in this
zone (and artificially high above and below). Given this and the fact that vertical gradients
observed from the validation data are in fact very large, it seems appropriate to assign the
head to the single cell that most represents the measurement interval. These are validation
data, and so they are not being "assigned" in the model in the traditional sense. They are
compared to the simulation results at these locations. This is another reason to choose a single
cell in which to make the comparison, because there is only one measured value at each
location covering many cells, but the model has different values for adjacent cells.

A K value estimated from an aquifer test is generally considered to represent the
screen interval because when the zone is stressed, flow is horizontal, and this is what the
analytical methods used to derive the K values from the test results assume. But under low-K
conditions, this assumption is generally not met and the entire filter pack may be involved in
the hydraulic response. Thus it is tempting in this case to compare the K values over as many
cells as covered by the filter pack, though this has the effect of artificially increasing the
number of validation targets. Therefore, only one cell is assigned each measured hydraulic
conductivity value. The cell selected is the one that is covered the most by the well screen and
the filter pack.



12

The assignment of validation data measured from MV-1, MV-2, and MV-3 is shown
in Figures 3.3, 3.4, and 3.5, respectively. The figures display the association between the
validation data and the model layers. In each figure, the left-hand-side plot shows the
lithology data and the right-hand-side plots show the head and hydraulic conductivity data.

Figure 3.3. Field data from well MV-1 and conversion to validation data tied to model cells. Well
screens are shown with the dashed red lines and filter pack intervals are shown with the
green dots.
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Figure 3.4. Field data from well MV-2 and conversion to validation data tied to model cells. Well
screens are shown with the dashed red lines and filter pack intervals are shown with the
green dots.
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Figure 3.5. Field data from well MV-3 and conversion to validation data tied to model cells. Well
screens are shown with the dashed red lines and filter pack intervals are shown with the
green dots.

For MV-1, model layer 8 is densely welded tuff (flow category 1 in the 1999 Faultless
model of Pohlmann et al.), model layers 7 and 9 through 16 are tuffaceous sediments (flow
category 2) and layers 17 through 27 are alluvium (flow category 1). For MV-2, model layers
10 through 12 and 15 through 19 are tuffaceous sediments, model layers 13 and 14 are welded
tuff and model layers 20 through 27 are alluvium (Figure 3.4). At the MV-3 location, layers 7
and 9 are welded tuff, layers 8 and 10 through 17 belong to the tuffaceous sediment category,
and layers 18 through 27 are alluvium (Figure 3.5).

Head and hydraulic conductivity measurements are tied to model cells based on the
earlier discussion and are shown in Figures 3.3 through 3.5. There are a total of nine head
measurements assigned to nine cells, providing nine validation targets, and four hydraulic
conductivity measurements assigned to four model cells, providing four validation targets.
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In addition to the lithology, h, and K data, head gradients are computed from the
measured heads and are used as validation targets. This is motivated by the fact that
groundwater flows in response to gradients, not individual head values. For example, if all
measured heads are much higher than modeled but gradients are the same, the model predicts
the right flow directions despite underestimating heads. Horizontal gradients were calculated
using the head measurements collected at roughly equivalent elevation in the three wells.
Vertical gradients within a single well are also considered (Table 3.1). The head measurement
locations are designated as MV-1-W, MV-1-L, and MV-1-U for the main well, lower
piezometer, and upper piezometer, respectively, at MV-1. The same convention is used for the
other two wells. It should be noted that the lower piezometer screen at MV-2 is deeper than
the main well screen. This is different from MV-1 and MV-3 where in both cases the lower
piezometer screen is shallower than the main well screen.

The gradients,
S
h



, in Table 3.1 are computed as
S
hh

S
h






 12 , where S is a coordinate

direction going from the first head measurement location to the second head measurement
location, SΔ is the distance between the two measured heads, h1 is the measured head at the
lower elevation point, and h2 is the measured head at the higher elevation point. The vertical
gradients are calculated between adjacent measurements in a single borehole (the deepest
measurement, MV-1-W, MV-2-L, or MV-3-W, and the middle one, MV-1-L, MV-2-W, or
MV-3-L, and between the middle measurement and the shallowest one, MV-1-U, MV-2-U, or
MV-3-U).

A total of 19 real-number validation targets (9 h values, 4 K values, and 6
S
h



values)

are used in the validation analysis. In addition, the lithologic data provide binary-type
validation targets where the category associated with each cell in the vertical profile of the
three wells can be compared to the categories used in the model and the number of
mismatches can then be computed.

3.2 Evaluating Calibration Accuracy for Individual Realizations (Sept 3)

Step 3 of the validation process (Figure 2.1) involves using weights to evaluate the
goodness of fit of each model realization using the calibration data (prevalidation data) that
were used in constructing the model. Calibration of the flow model is evaluated using the
average of squared differences between the measured (or observed) head ho and the simulated
head h at each of 10 straddle packer intervals in HTH-1 (Pohlmann et al., 1999). The root
mean squared error (RMSE) is calculated for each flow realization m using the expression

5.0
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(3.1)

where N is the number of calibration targets, hm is the simulated head for realization m, and
the subscript i on the right-hand side indicates the interval at which head is measured or
simulated. The RMSE ranges from 0.76 to 8.3 m, with a mean value of 1.7 m, for the full set
of 500 Monte Carlo realizations.
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Table 3.1. Vertical head gradients computed from the measured head values in the three wells.

MV-1 MV-2 MV-3
#

-W -L -U -L -W -U -W -L -U

Distance S
(m)

Gradient

S
hh

S
h






 12

1 h1 h2 250.00 4.60E-01

2 h1 h2 650.00 -8.72E-02

3 h1 h2 150.00 1.93E-01

4 h1 h2 650.00 -7.29E-03

5 h1 h2 250.00 5.19E-01

6 h1 h2 750.00 -7.22E-02

In a traditional stochastic numerical flow and transport model using Monte Carlo
techniques, each of the realizations of flow receives equal weight. However, it is clear from
the range of simulated results that some of the realizations fit the field data better than others.
In an effort to honor site-specific field information throughout the modeling process, the
results from those realizations that are in better agreement with the field data are given a
greater relative weight in the modeling analysis than those that are in poor agreement.

The weighting procedure utilized here is the generalized likelihood uncertainty
estimator (GLUE) (Beven and Binley, 1992) that extends Monte Carlo random sampling to
incorporate the goodness of fit of each realization. The goodness of fit is quantified by the
likelihood measure

 M

iom hhL
  2)()|( ΘY


(3.2)

where )|( ΘY


mL is the likelihood of the vector of outputs, Y


, for realization m given the

vector of random inputs, Θ


, h is the simulated head at the point i, ho is the observed head at
that point, and M is a likelihood shape factor. The choice of M is subjective though its value
defines its relative function. As M approaches zero, the likelihood approaches unity and each
simulation receives equal weight, as in the traditional Monte Carlo analysis. As M approaches
infinity, the simulations with the lowest RMSE receive essentially all of the weight, which is
analogous to an inverse solution. In this study, the value of M is assumed to be unity, which is
a value typically used for this type of analysis (Beven and Binley, 1992; Freer et al., 1996;
Pohll et al., 2003; Morse et al., 2003). Each of the 500 flow realizations is weighted based on
a normalized likelihood measure such that the sum of all weights is unity.

Figure 3.6 displays the calibration weights for all 500 realizations, based on using the
likelihood measure of Equation (3.2) and the original (i.e., prevalidation) calibration data. The
uniform weight of a traditional Monte Carlo approach (reciprocal of the number of Monte
Carlo realizations, 0.002 in this case) is shown by the red line in Figure 3.6. Using the GLUE
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weights to better honor the calibration data resulted in a spread of weights around the fixed
value of 0.002. Realization 328 attained the highest weight, indicating that it best fits the
calibration data. Put differently, the sum of squared errors for this realization was smallest
among all 500 realizations. This however, may not necessarily imply good agreement as the
weights convey relative performance not absolute performance. To evaluate the absolute
performance, realization 328 is evaluated in terms of how the modeled results compare to the
calibration data.
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Figure 3.6. The calibration evaluation results for the model realizations with the realization having

the highest likelihood measure, )|( ΘY


mL , circled in red.

The correspondence between the simulated heads in the best performing realization
(#328) and the observed heads at HTH-1 is good (Figure 3.7a). The data are well scattered
around the unit-slope line, and it is important to note the small range of values in Figure 3.7a.
Figure 3.7b shows a comparison between the modeled head profile at HTH-1 in realization
328 and the profile provided by the calibration data. Very good correspondence is observed in
Figure 3.7b.
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Figure 3.7. Plot of a) predicted versus observed heads at well HTH-1, and b) the modeled profile and
data at HTH-1 for realization #328 that attained the highest calibration score using pre-
validation data.

(a)

(b)
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3.3 Using Validation Data to Evaluate the Model and Individual Realizations (Step 4)

Multiple tests of the different model components are conducted using the validation
data. First, correlation-based and other goodness-of-fit measures are computed for individual
realizations. Second, individual realization scores and a reference value are computed from
which the P1 criterion is obtained. The P2 criterion is also obtained by considering the number
of targets where the field observation lies within the inner 95 percent of the model-produced
probability distribution. Third, the stochastic validation approach (Luis and McLaughlin,
1992) and its related hypothesis tests are conducted to obtain P3. Hypothesis testing based on
linear regression is conducted to obtain P4. Finally, P5 is obtained by evaluating model
structure and failure possibilities.

3.3.1 Correlation-based and Other Goodness-of-fit Measures

Three measures are used here; the coefficient of determination, R2, the index of
agreement, d, and a modified index of agreement, d1 . Detailed discussion of these measures
can be found in Hassan (2003a). A brief description is given here for completeness. The
coefficient of determination describes the proportion of the total variance in the observed data
that can be explained by the model. It ranges from 0.0 to 1.0, with higher values indicating
better agreement. The coefficient of determination is calculated as follows:
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where the overbar denotes the mean, P denotes predicted variable, O indicates observed
values, and N is the number of available pairs of predicted versus measured values. It can be
seen that if Pi = (AOi + B) for any nonzero value of A and any value of B, then R2 = 1.0. Thus
R2 is insensitive to additive and proportional differences between the model predictions and
observations. It is also more sensitive to outliers than to observations near the mean.

The index of agreement, d, was developed to overcome the insensitivity of correlation-
based measures to additive and proportional differences between observations and model
simulations. It is expressed as (Willmott, 1981)
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The index of agreement varies from 0.0 to 1.0 and represents the ratio between the
mean squared error and the “potential error” (PE), multiplied by N and then subtracted from
unity. The potential error represents the largest value that  2

ii PO  can attain for each
observed-simulated pair (Legates and McCabe, 1999). The index of agreement, d, represents
an improvement over R2, but is sensitive to extreme values owing to the squared differences.
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The sensitivity of R2 and d to extreme values led to the suggestion that a more generic
index of agreement could be used in the form (Willmott et al., 1985)
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where j represents an arbitrary power (i.e., a positive integer). The original index of
agreement d given in Equation (3.4) becomes d2 using this notation. For j = 1, the modified
index of agreement, d1 , has the advantage that errors and differences are given their
appropriate weighting, not inflated by their squared values.

The above three measures are applied to the CNTA model using the validation data.
The computations for head data, hydraulic conductivity data, and head gradients are
performed separately because the different data sets have varying orders of magnitudes and
varying units.

The R2 values are computed for each realization using the three data sets (heads,
conductivities, and head gradients). Then an average R2 value is obtained for each realization
by averaging the three values of the different data sets (Figure 3.8). The highest value attained
in each case is circled with red. These high values start from 0.6 and get close to unity (good
agreement). However, as indicated above, this measure is insensitive to additive and
proportional differences between observations and model predictions. These realizations will
be closely evaluated later to see whether the high R2 values indicate good agreement or are
impacted by additive or proportional differences. Overall, Figure 3.8 indicates that most of the
realizations attain values for R2 less than 0.5 for all three data sets.

The index of agreement, d, and the modified index, d1, are shown in Figures 3.9 and
3.10, respectively, with the highest values circled in red. In both cases most of the coefficients
are below 0.6. The exception is when the hydraulic conductivity data are used, resulting in a
maximum d value of about 0.82 and a maximum d1 value of about 0.75. The low values of d
or d1 indicate large deviation between the observations and the model results. As discussed
above, this measure is insensitive to additive and proportional differences such that the
realizations that attained the highest coefficients merit additional evaluation.

Figures 3.11 and 3.12 provide detailed comparisons for the realizations with the
highest R2, d, and d1 that were shown in Figures 3.8 through 3.10. The field data are plotted
against model predictions for these realizations and the plots are shown for each of the three
data sets. For reference, a one-to-one relationship line (i.e., a unit-slope line) is shown in each
plot (black line) and the best-fit line obtained using linear regression is shown in red.
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Figure 3.8. Coefficient of determination, R2, obtained using heads, conductivities, and head
gradients, with the red circle indicating the highest R2 among all realizations. Average R2

is also plotted.
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Figure 3.9. Index of agreement, d, obtained using heads, conductivities, and head gradients, with the
red circle indicating the highest d among all realizations. Average d is also plotted.
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Figure 3.10. Modified index of agreement, d1, obtained using heads, conductivities, and head
gradients, with the red circle indicating the highest d1 among all realizations. Average d1

is also plotted.

Realizations 91, 276, and 214 that attained the highest R2 values for heads, hydraulic
conductivity, and gradient comparisons, respectively, are shown in the left-hand side of
Figure 3.11. Although the linear relations in the head and head gradient plots seem good, the
relation dramatically deviates from the unit-slope line. In particular, realization 214 had an R2

very close to 1.0 for the head gradient case (Figure 3.8), but the line fitting the observed-
modeled relation has a slope of almost zero (Figure 3.11), which is very far from the desired
slope of 1.0. Similar results are shown for the other realizations attaining highest d or d1
values as shown from Figure 3.11. Figure 3.12 shows the comparison between the observed
data and the modeled results for the three realizations with the highest average R2

(left-hand-side plots), d (middle plots), and d1 (right-hand-side plots). Very similar patterns to
those in Figure 3.11 are observed for these three realizations.
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Figure 3.11. Observed versus modeled heads (m AMSL), conductivities (m/d), and head gradients
(dimensionless) for the realizations that attained highest R2, d, and d1. Shown also are the
best-fit line (red) and the one-to-one ratio line (black).

The analysis of the goodness of fit measures indicates that all model realizations are
deviating from the observed data. There are good correlations between the model and the
observations for the heads and the gradients. These correlations mean that when the heads
increase in the data they do so in the model and vice versa, but the range of values is
dramatically different. For example, measured heads increase from about 1,680 m (AMSL) to
about 1,825 m whereas the model range is from 1,627 to about 1,686 m. So the observed
heads are in a much higher and wider range compared to the modeled heads. Similarly, the
measured vertical gradients are much higher and, in the case of the comparison between the
alluvium and tuffaceous sediments, in a different direction than modeled gradients. The
hydraulic conductivity ranges in the field data and in the model are similar, but the measured
K values tend to be lower than the simulated values.
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Figure 3.12. Observed versus modeled heads (m AMSL), conductivities (m/d), and head gradients
(dimensionless) for the three realizations that attained highest average R2, d, and d1.
Shown also are the best-fit line (red) and a one-to-one ratio line (black).

3.3.2 Realization Scores, Sj, Reference Value, RV, and First Criterion, P1

The P1 criterion is obtained by computing the number of realizations with scores, Sj,
above a reference value, RV. For the general case of having N validation targets, the RV and
the individual scores, Sj, will depend on the sum of squared deviations between each
observation, O, and the corresponding P2.5 or P97.5. The parameters P2.5 and P97.5 are the 2.5th

and the 97.5th percentiles as used in (input) or produced by (output) the CNTA model. The
reference value and the realization score can be computed as
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where Oi is the field observation for validation target i,
i

P 5.2 and
i

P 5.97 are the 2.5th and the
97.5th percentiles of the model distribution for validation target i, and Pji is realization j
prediction of the model for validation target i.

For CNTA, 23 validation targets are available. These are nine head measurements,
four hydraulic conductivity measurements, and six inferred vertical head gradients. For each
one of these targets, the stochastic CNTA model provides a distribution of values, as each
realization of the model has different values for these targets. Using Equations (3.6) and (3.7),
the realization scores and the reference value are computed and compared (Figure 3.13). The
value of P1 from the figure is found to be only 1.0 percent (=5/500). Only five realizations
attained scores higher than RV. As will be indicated from the analysis of P2, many of the
validation targets fall outside the middle 95 percent of the target distribution produced by the
model.

Figure 3.13. Realization scores, Sj, relative to the reference value, RV, for the CNTA model with 19
validation targets. The P1 value here is 1.0 percent (=5/500).
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Since P1 is found to be less than 30 percent, the next step in the decision tree (Figure
2.2) is to check P2 , the number of validation targets where the field observation lies in the
inner 95 percent of the model distribution of that target (i.e., between the 2.5th and the 97.5th

percentiles) relative to the total number of targets. All of the nine head targets (Figure 3.14)
fall outside the model distribution and are much higher than the heads predicted by the model.
The differences between the highest values predicted by the model and the observed heads
range from 10 m to about 130 m (Figure 3.14).

Figure 3.14. The nine head observations (red circles) relative to the distributions produced by the
model at each of their respective locations. The 2.5th, 50th and 97.5th percentiles of the
model heads are also shown (green triangles).

Similar to the head targets, the hydraulic conductivity targets are plotted on the
histograms of the model output (Figure 3.15). All of the measured hydraulic conductivity
values fit within the inner 95 percent of the model distributions. Most of the values match the
peak density (i.e., the value with the highest frequency) of the model distributions. From these
plots and those in Figures 3.11 and 3.12 it can be concluded that the overall range of the
hydraulic conductivity used in the model was reasonable and the field observations at the
three wells validate the hydraulic conductivity ranges used in the model.
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Figure 3.15. The four hydraulic conductivity observations (red circles) relative to the distributions
used in the model at each of their respective locations. The 2.5th, 50th and 97.5th

percentiles of the model conductivities are also shown (green triangles).

The results of the hydraulic conductivity comparisons demonstrate the limitations of
adhering to a strict comparison of data to model-cell assignments and the importance of
having a broader view of the model components in light of the validation data. The
comparison between the new hydraulic conductivity values and those assigned to the
corresponding model cells was reasonably good; the field values were near the mode of the
distribution for each cell. That apparent validation is in fact misleading because it ignores the
hydrostratigraphic unit assignment. Each of the main well strings for the CNTA wells was
completed in a densely welded tuff because the densely welded tuffs are considered to present
the fastest groundwater travel pathways. The measured hydraulic conductivities in the MV
wells were focused on sections that encountered the densely welded tuff. However, when
compared to the model (Figure 3.15), it was compared to the conductivity assigned to the
location of the screen/filter in each well whether this location was considered densely welded
tuff in the model or not. Therefore, a more fair comparison is of the measured conductivities
to the welded tuff conductivity distribution used in the original CNTA model. This
comparison is shown in Figure 3.20.

The original model (Pohlmann et al., 1999) employed a lognormal distribution for the
densely welded tuff conductivity with a log10 mean of -0.87 and a log10 standard deviation of
0.632. This lognormal distribution is shown with the blue line in Figure 3.16. The four
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conductivity measurements are superimposed on this distribution. Comparison of the
measured hydraulic conductivities with the distribution of K used in the model for the densely
welded tuff category reveals that the new data are significantly lower than the low end of the
distribution used. The measured values are at least an order of magnitude lower than the
lowest possible value used in the model. In fact there is between three and four orders of
magnitude difference between the measured hydraulic conductivity values and the mode of
the distribution used in the model. The apparent match suggested by the location-to-cell
comparison of the validation analysis (Figure 3.15) occurs because the majority of realizations
assigned the well-screen cell locations to the category of tuffaceous sediments, which had a
much lower distribution of K.

The remaining six targets that belong to the vertical head gradients are plotted with the
model histograms in Figure 3.17. All of the six gradient targets fall outside the inner
95 percent of the model distribution for these targets. The magnitude of the field gradients is
much higher than the model-produced range, except for 4)/( Sh  , which is close to the
2.5th percentile. For some targets (e.g., 2)/( Sh  and 6)/( Sh  ), the field gradient is
opposite in direction to the gradient obtained in most of the model realizations.
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Figure 3.16. Conductivity distribution for the densely welded tuff that was used in the original CNTA
model (Pohlmann et al., 1999) and relation to the measured K values of the densely
welded tuff encountered in the three wells.
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Figure 3.17. Similar to previous figures but for head gradients (h / S)1 through (h / S)6.

Combining all targets together, only four out of 19 targets fall between the 2.5th and
97.5th percentiles of the model distributions for these targets. This gives a P2 value of
21 percent, which is less than the threshold of 40 percent in the decision tree (Figure 2.2).
Accordingly and based on the decision tree, the other three criteria, P3, P4, and P5, should be
evaluated so that a final conclusion could be made about the model validation process.

3.3.3 Applying the Stochastic Validation Approach of Luis and McLaughlin (1992), P3

This approach is applied here using the head data only. Details of the approach can be
found in Luis and McLaughlin and also in Hassan (2003a) and (DOE, 2004). A brief
description of the aspects related to the application to the CNTA model is presented here for
completeness. The approach is based on the assumption that the flow model is used for
predicting the distribution of hydraulic head in space, which describes the large-scale flow
behavior of the system. Another assumption is that the observations made for the purpose of
model validation are small-scale observations collected at sparse points in space and are
assumed to be consistent with the steady-state assumption of the model. Both of these
assumptions are met in the CNTA model and thus the analysis can be applied to the model.

Under these assumptions, the differences between predicted and measured head values
can be attributed to the following three error sources: (1) measurement errors, which represent
the difference between the true values and measured values of hydraulic head; (2) spatial
heterogeneity, which represents the difference between the large-scale trend (or smoothed
head) that the model is intended to predict and the true small-scale, actual values of head; and
(3) model error, which represents the difference between the model prediction and the actual
smoothed trend. Figure 3.18 shows a schematic representation of these error sources, where
an actual, fluctuating (due to heterogeneity) head distribution, hj, with a large-scale trend, jh ,
is shown in conjunction with a hypothesized stepwise distribution representing model
prediction, jĥ .
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Figure 3.18. Schematic representations of the actual head distribution, large-scale trend, and stepwise
model prediction (A), and the decomposition of the measurement residual into three error
sources or components (B).

The jth measurement residual, j, observed at location xj (for j = 1, ..., N), where N is
the total number of head measurements used for validation, can be written in terms of three
components of the error or the mismatch. This leads to the equation

)]̂(̂[][][ *  jjjjjjj hhhhhh  (3.8)

where the first term between the square brackets represents measurement error, the second
bracketed term represents the effect of geologic heterogeneity, and the last term represents the
model error. In (3.8), hj = h (xj) is the true head value at xj and )( jj hh x is the smoothed
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value of the large-scale trend or the expected value of hj. Equation (3.8) defines the separate
errors contributing to the differences between measurements and predictions.

If the model is valid, the hypothesis that the model prediction is equal to the smoothed,
large-scale values should be accepted. This is equivalent to accepting that the model error
term in (3.8) is zero. In statistical terms, the following null hypothesis is considered:

jj

jj

hh

hh





)̂(̂,tsignificaniserrorModel:H

)̂(̂,negligibleiserrorModel:H

1

0




(3.9)

Luis and McLaughlin (1992) proposed few tests that can capture the different aspects
of model evaluation. They proposed a quantitative approach to determine whether statistics
such as the sample mean and covariance of the residuals are consistent with hypothesis H0 in
(3.9). When the hypothesis is true, it can be shown that the desired measurement residual
variance can be written as

222
*

jj hh   (3.10)

where 2
j

 is the measurement residual variance, 2
*h

 is the measurement error variance

(human error, device error, etc.), and 2
jh is the head variance stemming from geologic

heterogeneity. The head variance, 2
jh , in (3.10) plays a key role in this approach since it

defines how much variability one should expect around the model’s predictions when the
model structure and measurements are both perfect. In other words, this variance establishes a
type of lower bound on the model’s ability to predict point values of head (Luis and
McLaughlin, 1992). The head variance can be derived from the results of the flow model and
evaluated at each node of the discretized domain. Equation (3.10) can then be used to evaluate
the measurement residual variance under the assumption that H0 is correct. One can thus test
the assumption that the mean residual is zero and use the mean squared residual (Equation
3.10) to test the null hypothesis H0 in Equation (3.9).

Mean Residual Test

If the null hypothesis is true (i.e., the model is predicting correctly the desired large-
scale trend), a sample mean computed from many measurement residuals should be close to
zero. This implies a test of the following form:

.
N
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m:statisticTest
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(3.11)



33

The null hypothesis, H
0
, is true if vm  , where v is a test threshold selected to give

the desired two-sided type I error probability (or significance level, ). The null hypothesis,
H

0
, in Equation (3.11) is equivalent to H0 in Equation (3.9). If it is assumed that m is

normally distributed (based on the central limit theorem), the threshold value may be obtained
from a standard normal probability table (Luis and McLaughlin, 1992).

Using the nine head measurements from MV-1, MV-2, and MV-3, this hypothesis test
is conducted for each individual realization of the CNTA model. First, the 500 realizations are
used to compute the head variance at the locations of the nine head measurements. These
variances are denoted as 2

jh in Equation (3.10), where j = 1, 2, …, 9. The measurement error

variance term, 2
*h

 , needed in Equation (3.10) represents the errors associated with the field
observations. To find this value, assume that there is a 95-percent confidence that the true
head at any of the measured head locations in the three wells is within 0.3 m (i.e., 1.0 ft)
of the observed head. If it is further assumed that a normal distribution applies, then the 95
percent confidence interval means that the interval from [the measured head value - 1.96 *h

 ]

to [the measured head value + 1.96 *h ] is equivalent to 0.3 2 = 0.6 m. This implies that

1.96 *h = 0.3, thereby giving a value of 0.02343 for the measurement error variance, *h .

Equation (3.9) is then used to obtain 2
j

 at each of the nine locations where head is measured.

To conduct the hypothesis test according to Equation (3.11), the test statistic, mis
computed for each realization, where j is obtained as the difference between the current
realization head prediction and the measured head for each measurement location j = 1, 2, …,
9. This test statistic is compared to the critical value of the standard normal variate, Z, at
exceedence probability of 0.975. This is based on a two-tail test at a 95-percent confidence
level or a 5 percent significance level. The results of this hypothesis testing are shown in
Figure 3.19a. For all realizations, the test statistic, mis greater than the critical Z value and
thus the null hypothesis (Equation [3.9] or [3.11]) is rejected for all realizations. This
indicates that the model prediction of the heads do not represent the large-scale trend inferred
from the field measurements.

Mean Squared Residual Test

If one assumes that measurement residuals conform to a particular probability
distribution, it would be expected that a certain percentage would lie outside confidence
bounds derived from this distribution. If, for example, that distribution is normal, the interval

jjj hh 96.1ˆ defines a 95-percent confidence interval around the predicted value jĥ ,

where
j

 is obtained from Equation (3.10). If a significant number of the measurements *
jh

lie outside this interval, the null hypothesis H
0

is rejected. A more convenient version of the
same concept relies on the following mean-squared error test (Luis and McLaughlin, 1992):
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Figure 3.19. Results of the hypothesis testing formulated according to the stochastic validation
approach of Luis and McLaughlin (1992).
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Decide that H
0

is true if: v
N

j

j
N
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 (3.12)

where v is a test threshold selected to give the desired significance level. If the hypothesis is
true and the measurements are sufficiently far apart for the residuals to be uncorrelated,
normally distributed random variables, the test statistic 

2
follows a chi-squared probability

distribution with N degrees of freedom. With only nine head measurements at CNTA, it is
difficult to determine whether this assumption is met or not. However, the test will be applied
to the model using the head data assuming the impact of the assumption would be relatively
small.

Equation (3.12) is used for each realization to obtain the test statistic 
2
. Then the

critical value of the test is obtained from a chi-squared distribution at a significance level of
5 percent and 9 degrees of freedom. The results of this test are shown in Figure 3.19b. The
test statistic 

2 is much greater than the critical value for all realizations. In fact the difference
is so large that the impact of the uncorrelated residual assumption would be negligible on
these results. The null hypothesis in Equation (3.9) or (3.11) is also rejected for all model
realizations.

Consistent with the previous analyses and tests regarding the head measurements, this
analysis indicates that the model predictions for the heads are not valid. None of the model
realizations was acceptable based on the two hypothesis tests conducted for the residuals. The
results of this analysis provide an insight into the performance of model realizations and
constitute the criterion P3 needed in the decision tree of Figure 2.2.

3.3.4. Hypothesis Testing on Linear Regression Line, P4

A linear regression analysis of calculated against measured data provides a method to
evaluate empirically the quality of the data-model fit. Bias in the model and uncertainty in the
input and measured data would be expected to affect both the slope of the regression line and
the standard error of the regression. There are several techniques for fitting a straight line
through x-y data pairs using regression analysis. The most common regression analysis in
general is the Ordinary Least Squares (OLS) regression of a dependent variable against an
independent variable.

If the model predictions represent the field conditions (expressed by the validation
data), the regression line should have a slope of 1.0 and an intercept of zero. Based on this
linear regression, one needs to statistically test the assertion that the slope of the regression
line is unity and that the intercept of the line is zero. Hypothesis testing can be used for this
purpose with the null and alternative hypotheses expressed as

1Slope:H

1Slope:H

1

0




(3.13)

The test statistic is ((Slope-1) standard deviation of the slope). This statistic is to be
compared to the critical value of the t-distribution at (N - 2) degrees of freedom (N is the
number of data points) and at the level of significance, )501,2( Nt . If the absolute
value of the test statistic exceeds the critical value, the null hypothesis is rejected.
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In a similar manner, the null hypothesis of a zero intercept can be examined.
Assuming b is the intercept of the linear regression line, the intercept hypothesis test is
formulated as

0:H

0:H

1

0





b

b
(3.14)

The test statistic is ((b-0) standard deviation of the intercept). This statistic is to be
compared to the critical value of the t-distribution at (N - 2) degrees of freedom and at the 
level of significance, )501,2( Nt . If the absolute value of the test statistic exceeds the
critical value, the null hypothesis is rejected. Failing to reject both null hypotheses does not
necessarily mean the model is free of biases, it only means that this analysis fails to identify
any bias (Flavelle, 1992).

Figures 3.20 and 3.21 exhibit the testing results for the slope and the intercept,
respectively. For the slope results, the unit-slope hypothesis is rejected for all realizations
using the head and head gradient data. For conductivity regression analysis, 474 realizations
had a regression line slope that is statistically not significantly different than 1.0. That is, the
unit slope hypothesis testing was accepted for these realizations. For the head zero intercept
tests, the null hypothesis is rejected for all realizations, whereas 476 of the 500 hydraulic
conductivity zero-intercept tests were accepted, and 377 of the 500 head gradient zero
intercept tests were accepted.

It is important to look at multiple tests and evaluate the different aspects of each model
realization in different ways. Some of the tests may give a false indication about performance,
but the collective results of multiple tests will increase the odds that the correct decision about
model performance is reached. The results of the hypothesis testing on the regression line lead
to the fifth measure, P5, needed in the decision tree process (Figure 2.2) for model validation.
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Figure 3.20. Results of hypothesis testing on the slope of the linear regression line using head data (a),
hydraulic conductivity data (b), and head gradients (c).
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Figure 3.21. Results of hypothesis testing on the intercept of the linear regression line using head data
(a), hydraulic conductivity data (b), and head gradients (c).
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3.3.5 Testing Model Structure and Failure Possibility, P5

Three types of analyses are performed here. First, the percentage of realizations where
a model layer is assigned to each category is calculated. These percentages are compared to
the field lithology obtained from the validation wells. If a model cell is assigned the correct
category more than 50 percent of the time (i.e., in more than 250 realizations), then it is
acceptable. If the percentage is less than 50 percent but is the highest percentage (see for
example k = 20 and 22 at MV-2, Table 3.3), it can still be acceptable.

Table 3.2 displays the lithology comparison for MV-1. All layers at the MV-1 location
were assigned lithology categories in the CNTA model based on new data from MV-1 except
layer 18, which was most frequently considered tuffaceous sediment in the model, but which
the validation data indicate should be alluvium cells. For this layer, 31 percent of the
realizations assigned this cell as alluvium. Although layer 18 is considered unacceptable
based on the 50-percent criterion mentioned above, it was still assigned the correct lithology
in about one third of the model realizations. This layer in the model is within the zone of
uncertainty in the alluvium-volcanic contact (Table 3.3). The model was constructed
recognizing that the true alluvium boundary was likely to be between layers 15 and 19.

The lithology comparison results for MV-2 are shown in Table 3.3. The majority of
model realizations assigned layers 13, 14, and 21 to categories different than those found in
MV-2. They were assigned the correct category in only 15 percent, 16.4 percent, or 17 percent
of the model realizations, respectively. This makes these cell assignments unacceptable. On
the other hand, although model layers 20 and 22 do not meet the 50-percent criterion, they
were assigned the correct lithology (Category 2 for layer 20 and Category 1 for layer 22) in
about 48 percent and 40 percent of the model realizations, respectively. These are larger
proportions than assigned to either of the other individual categories. They thus can be
considered acceptable. The higher percentage of densely welded tuff assigned in the upper
part of the volcanic section at MV-2 reflects the fact that this horizon was above the elevation
of the conditioning data used to constrain the proportions of Categories 2 and 3 near the
Faultless site. A much smaller percentage of densely welded tuff was observed in the volcanic
section near the Faultless site, as compared to elsewhere in Hot Creek Valley. This lower
percentage was honored by the conditioning data, but where conditioning data are absent
(below the nuclear test horizon and at shallow elevations), the higher, regionally observed
percentage (about 45 percent) of densely welded tuff was used as a conservative approach.
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Table 3.2. Comparison between model lithology and field lithology at MV-1.

Alluvium
(Category 1)

Tuffaceous
Sediments
(Category 2)

Densely
Welded Tuff
(Category 3)

27 100.00 0.00 0.00 1 Yes
26 100.00 0.00 0.00 1 Yes

25 100.00 0.00 0.00 1 Yes
24 100.00 0.00 0.00 1 Yes
23 100.00 0.00 0.00 1 Yes

22 100.00 0.00 0.00 1 Yes
21 100.00 0.00 0.00 1 Yes
20 100.00 0.00 0.00 1 Yes

19 61.80 22.80 15.40 1 Yes
18 31.20 42.00 26.80 1 No
17 10.80 63.00 26.20 2 Yes

16 2.60 74.00 23.40 2 Yes

15 1.20 79.40 19.40 2 Yes
14 0.40 82.20 17.40 2 Yes

13 0.20 79.40 20.40 2 Yes

12 0.20 77.60 22.20 2 Yes
11 0.00 74.60 25.40 2 Yes
10 0.00 71.20 28.80 2 Yes

9 0.00 69.80 30.20 2 Yes
8 0.00 64.80 35.20 3 No
7 0.00 55.00 45.00 2 Yes

Acceptable

Percentage of realizations where the model
cell belongs to each category

Model
Layer ( k )

Field
Lithology

Well

MV-1
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Table 3.3. Comparison between model lithology and field lithology at MV-2.

For MV-3, the analysis indicates that only layers 7 and 9 can be considered
unacceptable, as they were assigned Category 3 only 40 percent and 29.8 percent of the time
in the model, respectively, and were assigned Category 2 60 percent and 71.2 percent of the
time (Table 3.4). The lithology data from MV-3 indicate that these two layers belong to
Category 3, densely welded tuff. Combining the results from the three wells, it can be
concluded that the model lithology (or structure) is acceptable. Given that the interface
between the alluvium and the tuffaceous sediments was taken as uncertain in the model, and
given that densely welded tuff zones were infrequently encountered in the field, the results
shown in Tables 3.2 through 3.4 show an overall good correspondence between the model and
the lithologic validation data.

The lithology comparisons represent a second example of the importance of having a
general view of the model and data and not relying heavily on the quantitative analysis and
cell-to-data comparisons. The CNTA model structure was based on probabilities of
occurrence of three hydrostratigraphic categories: alluvium, tuffaceous sediments, and
densely welded tuff. These assignments were made based on spatial statistics gathered from
boreholes and conditioned on borehole observations. At Well MV-3, densely welded tuff was

Alluvium
(Category 1)

Tuffaceous
Sediments

(Category 2)

Densely
Welded Tuff
(Category 3)

27 100.00 0.00 0.00 1 Yes

26 100.00 0.00 0.00 1 Yes

25 100.00 0.00 0.00 1 Yes
24 100.00 0.00 0.00 1 Yes
23 72.00 14.40 13.60 1 Yes

22 40.40 31.20 28.40 1 Yes
21 17.00 39.60 43.40 1 No
20 6.20 48.40 45.40 2 Yes

19 1.60 54.60 43.80 2 Yes
18 0.20 62.20 37.60 2 Yes
17 0.00 69.40 30.60 2 Yes

16 0.00 75.00 25.00 2 Yes
15 0.00 82.80 17.20 2 Yes
14 0.00 83.60 16.40 3 No

13 0.00 84.80 15.20 3 No
12 0.00 83.60 16.40 2 Yes
11 0.00 83.00 17.00 2 Yes

10 0.00 82.20 17.80 2 Yes

Well

MV-2

Acceptable
Model

Layer ( k )
Field

Lithology

Percentage of realizations where the model
cell belongs to each category
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only encountered at the very bottom of the borehole. The model cell corresponding to that
location was assigned to the tuffaceous sediment category in 60 percent of the realizations and
to the welded tuff category in 40 percent of the realizations. The field data invalidated the
lithology assigned in the model because most realizations called for tuffaceous sediments.
This cell-by-cell comparison misses the larger issue of the overall proportions of each
hydrogeologic category assigned by virtue of the spatial statistics. The original model
hydrostratigraphy was based on borehole observations from throughout Hot Creek Valley. It
was noted that the occurrence of densely welded tuff appeared to be smaller in the immediate
vicinity of the Faultless test, but the proportion of densely welded tuff prescribed in the model
was held to the higher regional value because those units were recognized to represent the
critical pathways. Comparison of the aggregated hydrostratigraphy observed in the new wells
with the proportions simulated in the model (Figure 3.22) clearly shows that the model over-
represented densely welded tuff in the model domain.

Table 3.4. Comparison between model lithology and field lithology at MV-3.

27 100.00 0.00 0.00 1 Yes
26 100.00 0.00 0.00 1 Yes
25 100.00 0.00 0.00 1 Yes

24 100.00 0.00 0.00 1 Yes
23 100.00 0.00 0.00 1 Yes
22 100.00 0.00 0.00 1 Yes

21 100.00 0.00 0.00 1 Yes

20 100.00 0.00 0.00 1 Yes
19 100.00 0.00 0.00 1 Yes

18 69.20 20.40 10.40 1 Yes
17 30.00 52.80 17.20 2 Yes
16 9.20 72.20 18.60 2 Yes

15 2.80 79.80 17.40 2 Yes

14 0.60 82.40 17.00 2 Yes
13 0.20 82.00 17.80 2 Yes
12 0.00 81.00 19.00 2 Yes

11 0.20 80.60 19.20 2 Yes
10 0.00 74.00 26.00 2 Yes
9 0.00 70.20 29.80 3 No

8 0.00 64.00 36.00 2 Yes
7 0.00 59.20 40.80 3 No

Well

MV-3

Acceptable

Percentage of realizations where the model
cell belongs to each category

Model
Layer ( k )

Field
LithologyAlluvium

(Category 1)

Tuffaceous
Sediments

(Category 2)

Densely
Welded Tuff
(Category 3)
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Figure 3.22. Proportions of different hydrostratigraphic assignments in the model and the results
revealed by the validation data.

The second step in testing model structure is to comparison of the measured head
variance, hydraulic conductivity variance, and gradient variance with the model predicted
variances. This gives an overall idea of how the model structure compares to what is found
from the validation data. The model predictions for the 19 validation targets are analyzed for
each realization. The variance of the nine head values, 2

h , is obtained for the measured heads
and for the modeled heads of each realization. Similarly, the four hydraulic conductivity
values measured in the validation wells are used to compute 2

log K , and a similar value is
computed for each realization. The variance of the head gradients is also obtained from the six
values inferred from the head measurements and a corresponding value is computed for each
model realization. The results are plotted in Figure 3.23.

Ideally, each field point would plot within the cloud produced by the model
realizations. This is, however, not the case for the CNTA model. The values computed based
on field data (red circles) fall far from the plots of all model realizations, indicating a
significant deviation between model structure and that inferred from the validation data. The
field points fall far from the clouds created by model realizations in all three plots of Figure
3.23. Therefore, this second aspect of model structure indicates unacceptable model
performance.
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Figure 3.23. Relations between head, hydraulic conductivity, and gradient variances as obtained from
the model and the validation data.

A third and final check of model structure and failure possibilities is for the presence
of radionuclides (e.g., tritium) above background levels in the wells. Based on the analysis of
tritium in samples collected from the three wells, no evidence is found of radionuclides above
natural background.
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3.4 Linking Calibration and Validation Analyses and Developing Composite Scores for
Individual Realizations (Step 5)

The calibration and validation analyses performed in the previous sections can be
categorized into two types. One type is applicable to individual realizations (e.g., goodness of
fit measures, stochastic validation approach) and the other is applicable to the model as a
whole (e.g., P1 and P2 measures, model structure test through variance relations). According
to the decision tree (Figure 2.2), if P1 is less than 30 percent and P2 is less than 40 percent,
which is the case here, then one evaluates the other measures (P3, P4, and P5) and uses
subjective judgment to determine whether the model would require major revision or whether
it is a matter of a low number of acceptable realizations such that a revision could be made
using the prevalidation data only (i.e., right-hand-side loop of the validation process,
Figure 2.1).

The first type of analysis pertaining to the individual realizations is used to develop a
composite score for each realization and determine the number of acceptable realizations.
This number along with P1, P2, and the variance results (Figure 3.23) will guide the decision
regarding the model assessment.

An acceptable realization in a perfect world would have a high calibration weight (the
GLUE weights shown in Figure 3.6), values for the goodness-of-fit measures R2, d, and d1 as
close to 1.0 as possible, accepted hypothesis testing on the aspects related to the residuals and
the linear regression line, and lithology matching what the validation data indicated. To
quantify these aspects, the following scoring system is used.

1. The calibration weight is divided by the maximum GLUE weight attained. This gives
the realization with the maximum weight a score of 1.0 and all other realizations
scores less than 1.0.

2. The goodness-of-fit results for different data sets are used as obtained, because R2, d,
and d1 have values between zero (worst performance) and 1.0 (best performance).

3. The results of hypothesis testing are binary-type results (i.e., the null hypothesis is
either accepted or rejected). These are converted to a binary [0, 1] system. A score of
zero is given if the hypothesis is rejected and a score of 1.0 is given if the hypothesis is
accepted.

4. The lithology results are scored based on the number of model cells matching the
lithology validation data (Figures 3.3 through 3.5) relative to the total number of cells
where lithology validation data are available. This gives a maximum score of 1.0 if the
realization is matching all of the lithology validation data.

Based on this scoring system, the maximum score that is possible is 19.0 (Table 3.5).
Table 3.5 displays the different tests and the scoring system for the first 15 realizations. These
realizations attained scores ranging from 3.4 to about 7.4. None of the 500 realizations
exceeds 8.0 on this composite score measure (Figure 3.24). Though a satisfactory score is an
arbitrary assessment, it is clear from the results that the model would require major revision
rather than simply production of additional realizations using prevalidation data.



Table 3.5. Example of the scoring system used to develop a composite score, showing results from 15 of the 500 realizations.

head
data

conductivity
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1 0.1519 0.0926 0.119 0.0039 0.3749 0.1359 0.4516 0.25 0.0612 0.4166 0 0 0 1 0 0 1 1 0.8 5.8576
2 0.1121 0.0219 0.0121 0.0012 0.3733 0.2411 0.4553 0.2594 0.1041 0.4259 0 0 0 1 0 0 1 1 0.85 5.8564
3 0.2256 0.396 0.4387 0.7263 0.3807 0.0962 0.4691 0.2592 0.0892 0.4304 0 0 0 1 0 0 1 1 0.8167 7.3281
4 0.193 0.2272 0.5654 0.4682 0.37 0 0.4632 0.2513 0 0.4291 0 0 0 1 0 0 1 1 0.7333 6.7007
5 0.0621 0.002 0.7926 0.1883 0.3748 0.2684 0.4545 0.2632 0.1283 0.4256 0 0 0 1 0 0 1 1 0.8 6.7598
6 0.1204 0.3857 0.1147 0.6848 0.378 0.3377 0.4648 0.2616 0.2216 0.4299 0 0 0 1 0 0 1 1 0.7833 7.1825
7 0.1055 0.0239 0.7672 0.071 0.3732 0.1207 0.4593 0.2676 0.1272 0.4302 0 0 0 1 0 0 1 1 0.6833 6.4291
8 0.2435 0.0884 0.4599 0.7628 0.3686 0.3634 0.4507 0.2579 0.24 0.4236 0 0 0 1 0 0 1 1 0.7833 7.4421
9 0.0737 0.3354 0.1185 0.6998 0.3836 0.2056 0.4719 0.2577 0.1803 0.4263 0 0 0 1 0 0 1 1 0.8167 6.9695

10 0.4011 0.5989 0.3033 0.8082 0.379 0.1863 0.4795 0.2537 0.1175 0.436 0 0 0 1 0 0 1 1 0.65 7.6135
11 0.4293 0.0645 0.5847 0.1203 0.3741 0.4563 0.4521 0.2559 0.3005 0.4198 0 0 0 1 0 0 1 0 0.8 6.2575
12 0.2865 0.0009 0.0808 0.6102 0.3616 0.3498 0.4436 0.243 0.2351 0.4178 0 0 0 1 0 0 1 1 0.7667 6.796
13 0.0932 0.143 0.2767 0.1196 0.3772 0.3427 0.4601 0.2516 0.1974 0.4211 0 0 0 1 0 0 1 1 0.6833 6.3659
14 0.1975 0.039 0.2664 0.1457 0.3729 0.1709 0.4499 0.2526 0.1348 0.42 0 0 0 1 0 0 1 1 0.7 6.1497
15 0.3581 0.0263 0.4676 0.3516 0.3695 0.1151 0.4469 0.2515 0.1008 0.4157 0 0 0 1 0 0 1 1 0.7167 6.6198
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Figure 3.24. Composite score for all model realizations, including those presented in Table 3.5.

3.5 Final Assessment of Model Adequacy (Step 6)

Based on the results of the quantitative analysis and according to the validation
process, the outcome is that the model would need major revision to adequately represent the
validation data. As stated earlier in the discussion of the validation process, when the number
of unacceptable realizations is very large compared to the total number of model realizations,
the model either has a major deficiency or incorrect input distributions. Thus, there could be
situations of poor model performance attributable to incorrect distributions of input
parameters that could be corrected by simply adjusting those distributions. In the current case,
though, the results of the validation tests indicate a major deficiency in the model in regard to
head values and some flow directions.

In addition to the composite score for individual realizations, the tests performed for
the whole model such as P1, P2, and the variance relations, indicate that the model has a major
deficiency. The first criterion, P1, was about 1 percent and the second criterion, P2, was about
18 percent. Both did not meet the minimum threshold as per the decision tree (Figure 2.2).
The variance relations plotted in Figure 3.26 indicate a significant deviation between the
variances obtained from the model realizations and the field-based variances. These measures
are consistent with the composite score findings and thus support the decision of the need for
major revision for the model.

The validation analysis followed a rigorous quantitative process that strictly compared
the new data to parameter values used in the CNTA CAU (Corrective Action Unit) model at
those locations. By the measures prescribed in the CADD/CAP, the model fails to meet
validation criteria. This means that the new data do not match the data assigned to the
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particular model cells occupied by the wells in a sufficient number of realizations. This
rigorous, quantitative approach, however, does not allow broader analysis of the model as a
whole to determine what the fundamental failures are and their consequences. Two examples
were discussed earlier in this section that pertain to the hydraulic conductivity comparisons
(Figure 3.16) and the hydrostratigraphic assignments in the model (Figure 3.22). These
examples demonstrated the limitations of adhering to a strict comparison of data to model-cell
assignments.

If the prescribed process resulted in overall validation of the model, meaning that the
field data were found to correspond to the cell-based assignments of the model realizations,
adequacy of the overall model structure and performance could be easily presumed. In the
present case, however, the lack of validation of the distributions assigned to individual cells
provides little information regarding what aspects of the model are incorrect (and correct) and
their significance. Before decision makers can determine if the validation results meet
regulatory objectives (Step 7), a broader analysis of the model is required.

A less quantitative, but more hydrogeologically based, analysis of the CNTA CAU
model relative to the data provided by the MV wells is presented in the following sections.
This is done by examining the basic components and assumptions that comprise the CNTA
model and assessing how those would be handled in light of the new data. The discussion
concludes by examining the likely impact of including the processes and properties identified
as needing revision, using a very simplified, modified model.

4.0. HOLISTIC CNTA MODEL EVALUATION

Rather than testing individual model realizations in regard to data targets for model
cells, the following analysis examines the conceptual model, how it was implemented, and
how that would change based on the new data. The interaction between the various
components is also considered, as the ultimate problem of determining how far, how fast, and
how much contaminant migration may occur is not the result of any single model aspect. The
focus below is necessarily on flow model components because the new data predominantly
pertain to flow parameters.

4.1 Assumption of Steady State

The original flow model was based on hydrogeologic conditions prior to the Faultless
test under the assumption that transport over the long term would be controlled by these
factors rather than short-term effects of the test. In addition, flow was considered to be at
steady state owing to the large size of the Hot Creek Valley hydrologic system and the
absence of excessive groundwater withdrawals. No new data call into question the
steady-state nature of Hot Creek Valley as a whole, but the MV well data indicate that the
hydraulic impacts of the Faultless test may be more persistent in both time and space than
previously assumed. In particular, though it was recognized that aquifers were still recovering
from the nuclear test within the down-dropped block defined by the most prominent faults, the
head data from MV-1 suggest that an overpressured zone at the test elevation persists in that
direction, outside the northeastern bounding fault. Though not at pretest conditions, the
system may be at a quasi-steady state with respect to the overpressured zone. Water levels
monitored in well UC-IP-1S over the last several decades have remained relatively stable
despite being very elevated compared to assumed pretest conditions. This was previously
ascribed to trapping of high pressures within test-related faults. The elevated heads observed
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at the test horizon in wells MV-1 and MV-3 suggest that the elevated pressure may be
primarily trapped by the very low K of the hydrostratigraphic unit. The timescales for decay
of that pressure pulse are very long. Initial testing of a simplified transient model (discussed
later) indicates that this pressure pulse may need hundreds of years to completely decay.

Though the CAU model predicts contaminant transport for 1,000 years into the future,
the timescale over which monitoring and resource management decisions can be practically
made is on the order of decades. Given the length of time expected for the nuclear test
pressure pulse to dissipate, a revised flow model may retain a steady-state assumption, but
would be updated to reflect the quasi-steady-state hydraulic system post-nuclear test, rather
than conditions before Faultless. In other words, the assumption would be made that transport
over the next management timescale would be controlled by the hydrogeologic conditions
following the Faultless test.

4.2 Impact of Faults

Structural features, such as faults activated by the nuclear test, were not explicitly
included in the CNTA model due to lack of information regarding their subsurface locations
and hydraulic characteristics. The model was successfully calibrated (using pre-Faultless data)
without representing the faults. No new data specifically regarding the faults were collected,
but representing the larger set of hydraulic head data may now require the inclusion of faults,
likely as barriers to groundwater flow. A revised flow model would begin by attempting to
replicate the flow system without speculating about fault locations and properties, but should
include such features if required for calibration.

4.3 Model Scale

The original CNTA model was constructed at a scale intermediate between the scale
of the near-cavity environment and the scale of regional groundwater flow. Very low
groundwater velocities led to a reduction in model size (Pohll et al., 2003) for calculation of
the contaminant boundary. The 2003 model domain easily encompasses MV wells such that
no modification of domain size would be required.

4.4 Identification of Hydrostratigraphic Units

Three categories of hydrostratigraphy were simulated in the Faultless model:
Quaternary alluvium, Tertiary tuffaceous sediments (bedded tuffs, and partially welded tuffs),
and Tertiary rhyolites and densely welded tuffs. Each of these units was encountered, but no
additional hydrogeologic units were identified during drilling of the MV wells.

4.5 Spatial Representation of Hydrostratigraphic Facies

The geometry of the Quaternary alluvium category was delineated using thicknesses
of alluvium in northern Hot Creek Valley estimated by Healey (1968). The approach used to
configure this boundary in the model is described in detail by Pohlmann et al. (1999).
Uncertainty in the location of the base of the alluvium was included in the model such that at
unknown points (distant from wells), the base was picked for an individual realization within
a 150-m vertical interval centered on the estimated location. Lithologic logs from MV-1 and
MV-2 show that the alluvium is thicker in those locations than expected. The uncertainty in
alluvium depth was broad enough, however, that some realizations simulated alluvium to the
depths encountered in the wells. The alluvium encountered at MV-3 matched the model
predictions very well. These results suggest that the approach to simulating the geometry of
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the alluvium category is robust and that the uncertainty bounds used are broad enough. A
revised model would benefit from the additional conditioning points of the new wells, but the
overall representation of the alluvium would not change significantly.

The Tertiary volcanic section was divided into Category 2 (tuffaceous sediments,
bedded tuffs, and partially welded tuffs) and Category 3 (rhyolites and densely welded tuffs)
on the basis of geophysical log signatures. The procedure is described in Pohlmann et al.
(1999) and relies on the high electrical resistivity of densely welded tuffs. The model domain
below the alluvium was populated with Categories 2 and 3 based on a spatial correlation
structure developed through analysis of the well log data. A vertical variogram was
calculated, but the large horizontal spacing between wells prevented development of a
horizontal variogram. The horizontal correlation length was estimated using a 10:1 horizontal
to vertical anisotropy ratio. The vertical correlation length was 325 m, while the horizontal
was 3325 m. The new data indicate that the values used in the model were conservative in that
they amply covered correlations observed in the new wells.

The multiple realizations of the three-dimensional maps of hydrogeologic categories
were populated in the volcanic section by adhering to relative proportions of Categories 2 and
3. The target values of the simulation proportions of the two categories (61 percent for
Category 2 and 39 percent for Category 3) represented a compromise between values
determined from the entire CNTA dataset (throughout Hot Creek Valley) and values
determined from wells in the immediate Faultless area. In the entire dataset, the volcanic
rocks are evenly divided between Category 2 and 3, whereas the local dataset was dominated
by Category 2 (73 percent of the volcanic section penetrated by boreholes). It was assumed
that the pattern of Categories 2 and 3 observed throughout Hot Creek Valley would be present
in the lower part of the domain, below the emplacement well where there were no
observations. This can be seen in the category assignments at the new well locations (Tables
3.2, 3.3, and 3.4) by the significant increase in Category 3 simulated in the cells below the
original conditioning data. The new data support the absence of densely welded tuff in the
volcanic section at and above the nuclear test elevation at MV-1 and MV-3. Figure 4.1
presents comparisons between the model assignments and the MV data in terms of the
proportions of the three categories above (Figure 4.1a) and below (Figure 4.1b) the Faultless
working point. In both cases, the simulated proportions of the densely welded tuff are
overestimated. In addition, though one densely welded tuff interval was intercepted near the
base of wells MV-1 and MV-3, the new data indicate that there is less Category 3 at depth
than assumed in the original model. A model conditioned on the new data would simulate
fewer layers of densely welded tuff immediately below the cavity than the original model.
Realizations with densely welded tuff were the only ones that resulted in significant transport.
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Figure 4.1. Comparisons of simulated and observed proportions of Categories 1, 2, and 3 a) above
and b) below the working point in the three MV wells.

4.6 Hydraulic Conductivity Distributions

Extensive hydraulic testing was performed in wells in the CNTA prior to the Faultless
test. These tests were conducted in open-hole intervals or through perforated casing using
inflatable straddle packers and were designed to characterize vertical variations in hydraulic
head, hydraulic gradient, relative specific capacity, storage coefficient, groundwater velocity,
and hydrochemistry. The packer test data formed the basis for characterizing the spatial
distribution of K in the CNTA flow model (Pohlmann et al., 1999). The distribution for
alluvium was based on nine measurements, 23 for Category 2, and 26 for Category 3. The
means and distributions followed the trend expected from the conceptual model, with the
highest K values in Category 3 (representing densely welded tuffs), the lowest in Category 2
(representing tuffaceous sediments), and the alluvium values intermediate.

Hydraulic tests have only been performed in the three main well intervals in the MV
wells, all three of which are completed in densely welded tuffs. The lower piezometer in MV-
2 was also tested, but its screen was open to the tuffaceous sediments section. Qualitatively,
drilling records of borehole fluid balance indicate that the alluvium was somewhat permeable
and that the tuffaceous sediments were of very low permeability, consistent with expectations.
However, the K estimated for the densely welded tuff from the aquifer tests is much lower
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than the distribution applied in the model (Figure 3.16). As noted previously, very little
densely welded tuff was encountered in the Faultless area such that the packer test data for
densely welded tuff was predominantly from tests elsewhere in the valley. The results from
the MV wells suggest that the conceptual model of densely welded tuff as highly conductive,
fractured pathways may be in error in the immediate Faultless area. Apparently, not only is
densely welded tuff less common than elsewhere in the valley, when it does occur, its
conductivity more closely resembles values previously considered as representative of the
tuffaceous sediments. A revision of the Faultless flow model would face a decision regarding
whether to maintain the conceptual model but spread the distribution of densely welded tuff K
to include lower values, or abandon the distinction between tuffaceous sediments and densely
welded tuff.

A more detailed analysis of the hydraulic conductivity values from the MV wells has
been performed to address the issue of why they are so much lower than K values estimated
from earlier wells near Faultless. The main difference between the K values estimated from
the MV wells and the results from the original packer tests is that a considerably larger
volume of water was used in the constant-rate MV tests. Even though the pumping period was
relatively short for MV-1, it was treated as a slug test in the analysis. In contrast, the original
packer tests were conducted by injecting or swabbing through small-diameter tubing into the
testing interval. In addition, the MV tests were conducted through slotted casing with gravel
packs, while the packer tests were conducted through shot-perforated casing that was
cemented in place. The design of the MV tests should provide a more representative hydraulic
response of the tested formation than the packer tests.

Another aspect to consider in the comparison is the length of the tested interval
(Figure 4.2). In the case of HTH-1, the packed interval was always smaller than the thickness
of the unit tested, such that there is confidence that the tested unit contributed/accepted the
majority of the stress. For MV-1 and MV-3, the slotted interval was quite a bit longer than
the thickness of the densely-welded tuff, with the remainder of the interval comprised of non-,
partly, or moderately welded tuff. Thus, the K values calculated from these tests are likely to
be impacted by the influence of these lower-K rocks; the less densely welded tuff in the
slotted interval, the lower the estimated K. There is a linear correlation between K and the
proportion of intake interval open to the densely welded tuff for the MV wells (Figure 4.2).
However, the slotted interval of MV-2 matched the thickness of the densely welded tuff, so
the interval length alone cannot account for the lower K values in the MV wells.

Another issue related to the interval length is that the K values used for validation
were calculated using the full thickness of the aquifer, not the length of the slotted interval,
which would be more consistent with the original packer tests. The values in Figure 4.2 were
calculated using the intake interval length, not the full aquifer thickness. Table 4.1 exhibits the
K values calculated using the full aquifer thickness, the screen length, and just for comparison
purposes, the thickness of the densely welded tuff alone. As the length is reduced, the
estimated K value increases, but in all cases the results are still lower than any of the other
volcanic rocks in the Faultless area. Despite the issues raised above, the fact still stands that
the recent tests in the MV wells show that the densely welded tuff has very low K in the
Faultless area, even lower than the few K values reported for the tuffaceous sediments. Based
on these results, a case could be made to eliminate the higher K category in the model.
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Figure 4.2. Conductivity values plotted against interval lengths for the MV wells and the preexisting
wells at Faultless. The MV well intake length is 50 m and the HTH-1 packer interval in
the densely-welded tuff is 18.4 m. Tuffaceous sediment thickness is many times greater
than the HTH-1 packer intervals in that unit. Conductivity for UC-1-P-2SR is calculated
from water level recovery associated with resaturation of the cavity and rubble chimney
subsequent to the Faultless test.

Table 4.1. Conductivity values from the MV wells computed using different lengths.
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4.7 Groundwater Flow Directions

Based on hydraulic head measurements scattered throughout Hot Creek Valley,
groundwater flow in the alluvium was believed to flow toward the south. Similarly,
measurements in Hot Creek and surrounding valleys formed the basis for an assumption of
generally northward flow in the deeper volcanic system. Head was assumed to decrease with
depth (recharge conditions) in the north part of Hot Creek Valley, and increase with depth
(discharge conditions) in the south part. The immediate CNTA area in the model was located
in the zone of transition between these vertical gradient regions, with downward flow in the
immediate test area and upward gradients to the south.

Head data from the MV wells and HTH-2 are used to solve the three-point problem for
flow direction determination at each screen level. The upper piezometer measurements
provide flow direction in the alluvium, which can be compared to the gradient in the model
based on the mean head distribution of the stochastic model realizations (Figure 4.3). Multiple
three-point problems are solved by choosing different combinations of the four wells. The
results using the three MV wells are shown in Figure 4.3a, using MV-1, MV-2, and HTH-2
wells are shown in 4.3b, using MV-1, MV-3, and HTH-2 wells are shown in 4.3c, and using
MV2, MV-3, and HTH-2 wells are shown in 4.3d.The model produces a mostly southerly-
southwesterly flow direction in the alluvium layer but the MV heads (and the combination
with HTH-2) indicate more of an easterly-southeasterly direction. Similarly, Figures 4.4 and
4.5 display the flow directions for the intermediate screen (open to the tuffaceous sediments at
the general elevation of the nuclear test) and the lower screens (open to a densely welded
tuff), respectively. The direction from the MV well data in the nuclear-test layer is almost
reversed compared to the model. However, in the densely welded tuff unit, the flow directions
indicated by the wells and by the model are almost the same, pointing to the north-northwest
direction.

The elevated heads at the nuclear test horizon in the MV wells are likely to represent a
trapped pressure pulse caused by the test and low K barriers in the test vicinity. Therefore, the
flow directions indicated by the MV wells are representative of local (both in space and time)
directions, whereas the model was designed to represent regional conditions. A revised model
considering the trapped pressure pulse and the presence of some low-K barriers may be
capable of matching the flow directions inferred from the MV wells.
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a) b)

c) d)

Figure 4.3. Solution of the three-point problem for flow direction at the upper screen level using field
data from MV wells (MV-1-U, MV-2-U, MV-3-U) and HTH-2 compared to the flow
direction using the mean heads from the model.
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Figure 4.4. Solution of the three-point problem for flow direction at the intermediate screen level
(approximate nuclear test elevation) using field data from the MV wells (MV-1-L, MV-2-
W, MV-3-L) compared to the flow direction using the mean heads from the model.

Figure 4.5. Solution of the three-point problem for flow direction at the lower screen level (densely
welded tuff) using field data from the MV wells (MV-1-W, MV-2-L, MV-3-W)
compared to the flow direction using the mean heads from the model.
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4.8 Transport Parameters

The CNTA transport model included distributions of porosity, assignments of
retardation and matrix diffusion, and assumptions regarding the apportioning and release
characteristics of radionuclides. The MV wells did not collect data pertaining to these
transport parameters, though water samples were collected from the wells to assess the
absence of transport predicted by the model. Qualitatively, the abundance of tuffaceous
sediments and low K values encountered in the wells is consistent with both significant
reactive surfaces for sorption reactions, and presence of porous material available for matrix
diffusion.

4.9 Implications of the Validation Results and Expected Outcomes of a Revised Model

The CNTA flow model was based on hydrogeologic conditions prior to the Faultless
test, under the assumption that transport over the long term would be controlled by these
conditions rather than the relatively short-term effects of the test (Pohlmann et al., 1999).
Furthermore, flow was considered to be at steady state owing to the large size of the Hot
Creek Valley hydrologic system and the absence of excessive groundwater withdrawals such
that significant temporal fluctuations in regional water levels were not expected under current
climatic conditions. Local structural features such as faults were not explicitly included due to
the lack of information regarding their subsurface locations and hydraulic characteristics.

The validation data indicate that the assumptions regarding the hydraulic impact of the
nuclear test and faults are wrong. Given the observation that heads in all three validation wells
are much higher than modeled based on pre-test conditions, it seems that the near-field
conditions impacted by the test and the down-dropped block have major impacts on the heads
in the wells. The fact that these impacts have persisted indicates the possibility that they are
long-term and not just temporary impacts as perceived in the original modeling study.

Model revision to incorporate nuclear-test effects on the flow system is a major effort
that may or may not be needed to meet the regulatory objectives of the site. This will be
decided as Step 7 in the validation process, a decision for DOE and NDEP. A simplified,
preliminary three-dimensional model incorporating some of the near-field features is
presented here to test some hypotheses regarding the elevated heads observed in the MV
wells. In the following, the geometry of this preliminary revised model is described and the
model features are discussed. Boundary and initial conditions are also presented, followed by
a discussion of some preliminary results and their implications for the CNTA closure process.

4.9.1 Description of Preliminary Revised Model

The model domain used in Pohll et al. (2003) for calculation of the contaminant
boundary is used here. The model domain is 3.6 km long on each side (approximately twice
the length of the land withdrawal area), is centered over UC-1, and is aligned in the north-
south direction (Figure 3.1). The domain covers the same 1,350-m vertical section included in
the 1999 and the 2003 model. This model domain easily encompasses the MV wells such that
no modification of domain size is required.

The domain is assumed to be composed of two lithologic layers, the alluvium layer
and the volcanic rock layer, which includes the tuffaceous sediments and the densely welded
tuff together as one unit. For simplicity and for the purpose of this preliminary testing, no
spatial heterogeneity is considered within the two layers. Several faults, as identified by
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McKeown et al. (1968) are included around the Faultless cavity. However, the downward
extent of these features and their dip/strike are not known, and as such, they are considered to
be vertical and to extend across the entire model thickness.

Due to the presence and the size of these features, the original finite-difference code
(MODFLOW) used in Pohlmann et al. (1999) and Pohll et al. (2003) could not be used here.
Instead, the FEFLOW (Diersch, 1998) finite-element code is used for the flow simulations of
this preliminary model. FEFLOW is a finite-element simulation package available from the
WASY Institute for Water Resources Planning and Systems Research Ltd., developed for
two-dimensional and three-dimensional density-dependent flow, mass, and heat transport
processes in groundwater. It is well-suited for incorporating features such as faults, shear
zones, and discrete fracture zones. Being a finite-element code, FEFLOW provides the ability
to refine the domain discretization around important features in the model. The faults around
the Faultless cavity were discretized and incorporated in the FEFLOW-based model.

The preliminary model consists of 13 layers (Figure 4.6). The uppermost three layers
represent the alluvium stratum with hydraulic conductivity equal to 0.0487 m/day. The
remaining 10 layers represent the volcanics with hydraulic conductivity equal to
8.49 10-4 m/day. These values of hydraulic conductivity are equal to the mean log hydraulic
conductivity values used for Categories 1 and 2, respectively, in the 1999 and the 2003
models.

FaultsCavity

Figure 4.6. The finite-element mesh of the revised model showing the location of the faults and the
test cavity.
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Other than the inclusion of faults and the change from finite differences to finite
elements for the method of flow simulation, this preliminary revision of the groundwater flow
model is configured in much the same way as the original model. The northern, southern, and
bottom faces are specified head boundaries, and the east and west faces are no-flow
boundaries (this configuration is based on the predominantly north-south flow patterns
simulated in the 1999 model that were based on regional data analysis) (Figure 4.7). Although
the heads from MV wells indicate different flow directions in the upper and middle model
layers, these may be local and may be impacted by bounding faults. Therefore, the boundary
conditions were not changed in this preliminary testing. The aim is to incorporate the least
amount of change in the 1999 model as a first step to explain the reason for the elevated heads
in the MV wells.

Figure 4.7. Schematic diagram showing the boundary conditions for the revised model.

Boundary heads are estimated using head measurements made in the straddle-packed
intervals of the CNTA exploratory wells UCe-20, UCe-18, andHTH-1. As in the 1999 model,
the process uses HTH-1 as the starting point, as it is located much closer to Faultless than the

No-flow
boundary

Specified head
boundary

No-flow
boundary

Specified
head
boundary
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other wells. Estimates of head at the elevations of the top and base of the model at the location
of HTH-1 were calculated in the 1999 model by vertical extrapolation of HTH-1 head values.
Similarly, the horizontal gradients at the top and base of the model are determined using the
uncertainty in the linear regression of head data from UCe-20, UCe-18, and HTH-1. The
heads of the remaining nodes on the specified head boundaries are obtained by linear
interpolation between the heads on the edges. Figure 4.8 shows the bottom boundary
condition of the model where the heads are linearly interpolated from 1,668.6 m south to
1,652.4 north.

The simulations are performed in two stages. First, the model is run to steady state
using homogeneous isotropic properties for the two layers, the alluvium layer and the
volcanic rock layer. The main objective of running the steady-state condition is to obtain the
initial head condition for the transient case.

Figure 4.8. Specified head boundary conditions for the model base.

Second, the model is run in a transient mode to investigate the impact of faults on an
elevated pressure pulse that is imposed on the domain as an initial condition. This pressure
pulse is due to the Faultless test and is assumed to impact three model layers at, above, and
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below the working point. Close to the cavity, the nuclear test caused a drop in water level, as
observed in UC-1-P-2-SR. Away from the cavity, the pressure pulse caused rises in the water
levels in wells HTH-1, HTH-2, and UC-1-P-1S. To honor these observations, the initial head
distribution is assumed to be about 1,200 m AMSL within a circle surrounding the cavity and
to gradually increase radially outward to a maximum value of about 1,900 m at a radial
distance of about 900 m from the working point. Figure 4.9 displays the initial pressure
distribution in the middle layer (passing through the Faultless working point) which is also
imposed on the layer above and the layer below. The initial heads in the remaining layers are
assigned the steady-state head values.

Figure 4.9 Initial head distribution at the model layer passing through the test cavity.
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4.9.2 The Steady-state (Calibration) Results

The steady-state values of hydraulic head in HTH-1 and HTH-2 are used to evaluate
the goodness of fit (i.e., calibration) of the model and its ability to represent the steady-state
conditions prior to the Faultless test. Heads at the MV well locations are also monitored. The
distribution of the 19 steady-state head observation points is as follows: nine points at
different screen levels in HTH-1, one point at HTH-2 and three points for each of the MV
wells. The data from the MV wells are not used in this calibration. They are simply observed
to evaluate the differences in the model results at the MV wells locations between the
steady-state case and the transient case.

The comparisons between the measured heads and the modeled heads are shown in
Table 4.2. Similar to the previous models, this model accurately simulates the heads in both
HTH-1 and HTH-2. However, it could not reproduce the elevated head values in the MV
wells. As can be seen from Figure 4.10, the hydraulic heads in all layers under steady-state
conditions range from 1,662 to 1,670 m. It is evident from the steady-state results that the
high heads at the MV wells cannot be readily obtained by simply adjusting the parameters of
the steady-state model.

Table 4.2. Comparison between the measured heads and the modeled heads using the revised
simplified model under the steady-state conditions.

# Layer Elev Name Slice Measured Head Obs point H Squ Err Err
1 1,619.37 1,573.37 1,610 HTH1 1 1,664.30 1 1,664.43 0.02 -0.13
2 1,542.37 1,481.87 1,480 HTH1 2 1,664.15 6 1,664.43 0.08 -0.28
3 1,405.67 1,375.17 1,380 HTH1 3 1,664.75 7 1,664.43 0.10 0.32
4 1,326.37 1,308.17 1,280 HTH1 4 1,663.40 8 1,664.43 1.06 -1.03
5 1,268.47 1,228.87 1,180 HTH1 5 1,664.00 9 1,664.43 0.18 -0.43
6 1,161.77 1,131.37 1,080 HTH1 6 1,665.20 10 1,664.39 0.66 0.81
7 1,027.67 1,006.37 980 HTH1 7 1,662.80 11 1,664.35 2.40 -1.55
8 933.17 914.97 880 HTH1 8 1,661.90 13 1,664.31 5.81 -2.41
9 738.37 715.37 680 HTH1 10 1,664.00 17 1,664.22 0.05 -0.22

10 1,655.56 1,500.00 1,610 HTH2 1 1,667.10 2 1,664.26 8.07 2.84
11 987.92 884.90 880 MV-1L 8 1,809.84 14 1,663.33 21,465.77 146.51
12 1,630.44 1,545.70 1,610 MV-1U 1 1,753.16 3 1,666.25 7,554.04 86.91
13 757.49 633.74 680 MV-1W 10 1,694.89 18 1,661.42 1,120.11 33.47
14 847.27 771.07 780 MV-2L 9 1,752.69 16 1,663.89 7,885.80 88.80
15 1640.66 1,571.17 1,610 MV-2U 1 1,776.88 4 1,664.71 12,582.56 112.17
16 994.49 892.99 980 MV-2W 8 1,781.62 12 1,664.30 13,764.92 117.32
17 946.40 834.24 880 MV-3L 8 1,820.89 15 1,663.37 24,811.61 157.52
18 1,655.98 1,568.80 1,610 MV-3U 1 1,766.77 5 1,666.18 10,118.55 100.59
19 768.09 593.44 580 MV-3W 10 1,691.06 19 1,660.63 925.80 30.43

Screen Elev.
Model SteadyData Error
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Figure 4.10. Steady-state head results of the revised model.
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4.9.3 The Transient State Initial Results

The main objective of the transient case is to investigate the effect of the faults,
and the effect of the elevated pressure pulse caused by the Faultless test. The fault
locations are identified based on McKeown et al. (1968), and the hydraulic conductivity
of these faults is assumed to be 1 10-8 m/day. There are no data to support the extent or
the magnitude of the pressure pulse. Therefore, the location of the pressure pulse is
assumed to be in the middle layer containing the cavity. Two hypotheses for the initial
pressure conditions were evaluated. In the first hypothesis, the head values just after the
test at the locations of wells HTH-1, HTH-2, UC-1-P-1S, and UC-1-P-2SR were used as
initial conditions for the head at the cavity layer. Initial heads in between these wells
were linearly interpolated. Figure 4.11 shows the initial heads under the first hypothesis.
This hypothesis failed to simulate the high-head values in the MV wells. That is because
wells HTH-1, HTH-2, UC-1-P-1S, and UC-1-P-2SR and the linear interpolation between
them did not generate initial high head values in the locations of the MV wells.
Consequently, the initial head at the location of the MV wells were at the steady-state
values, which were significantly lower than the measured heads.
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Figure 4.11. Simulation of the pressure pulse (first hypothesis) and the initial head distribution.

In the second hypothesis, a circle centered on the cavity with a radius of about
900 m (to pass through MV-2, the farthest well from the cavity) is used to simulate the
pressure pulse. Two observations at UC-1-P-1S after the Faultless test (2/2/1968 and
2/11/1968) showed that water was flowing from the well at rates of 0.32 L/s and 0.95 L/s,
respectively. Therefore, the maximum head value is assumed to be 1,900 m (about 62 m



above land surface level at UC-1-P-1S). The initial head used under this hypothesis is
shown in Figure 4.9. This second hypothesis succeeded at simulating the high head
values in the MV wells. Therefore, a manual calibration is used to obtain the parameter
values that best simulate the observations. The objective function used in the calibration
was the sum of squared error at each observation point.

The calibration parameters in the manual calibration were 1) the storage
compressibility in both alluvium and volcanic rocks, and 2) the hydraulic conductivity
and the storage compressibility in the three layers adjacent to the cavity (referred to here
as the cavity zone). It is assumed that the properties of the volcanic rocks in the cavity
zone are different from the host rock as a result of the nuclear test. Figure 4.12 shows the
extent of this zone that extends laterally from the cavity to the boundary of the down-
dropped block. The hydraulic conductivity anisotropy ratio and conductivity values of the
alluvium and host volcanic rocks were held constant at values representative of the 1999
and 2003 models. The faults were assigned a constant hydraulic conductivity value equal
to 1 10-8 m/day.
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the distribution of the calibration wells and their intervals in relation to the revised model
layers. The best parameters obtained from the manual calibration of the revised model
under transient conditions are summarized in Table 4.4.

Table 4.3. Summary of the wells used in the calibration processes.

Slice # Slice Elevation (m)

1 HTH-1 1,619.37 1,573.37 1 1,690

2 HTH-1 1,542.37 1,481.87 2 1,530

3 HTH-1 1,405.67 1,375.17 3 1,430

4 HTH-1 1,326.37 1,308.17 4 1,330

5 HTH-1 1,268.47 1,228.87 5 1,230

6 HTH-1 1,161.77 1,131.37 6 1,130

7 HTH-1 1,027.67 1,006.37 7 1,030

8 HTH-1 933.17 914.97 8 930

9 HTH-1 738.37 715.37 10 730

10 HTH-2 1 1,690

11 HTH-2 2 1,530

12 UC-I-P-1S 2 1,530

13 UC-I-P-1S 3 1,430

14 UC-I-P-1S 4 1,330

15 UC-I-P-1S 5 1,230

16 UC-I-P-1S 6 1,130

17 UC-I-P-1S 7 1,030

18 UC-I-P-2SR 4 1,330

19 UC-I-P-2SR 5 1,230

20 UC-I-P-2SR 6 1,130

21 UC-I-P-2SR 7 1,030

22 UC-I-P-2SR 8 930

23 UC-I-P-2SR 9 830

24 MV-1W 757.49 633.74 10 730

25 MV-1L 987.92 884.9 8 930

26 MV-1U 1 1,690

27 MV-1U 2 1,530

28 MV-2W 994.49 892.99 8 930

29 MV-2L 847.27 771.07 9 830

30 MV-2U 1 1,690

31 MV-2U 2 1,530

32 MV-3W 768.09 593.44 10 730

33 MV-3L 946.4 834.24 8 930

34 MV-3U 1 1,690

35 MV-3U 2 1,530

1,630.44 1,545.7

1,640.66 1,571.17

1,655.98 1,568.8
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Figure 4.13. The distribution of open well intervals within the model layers.

Table 4.4. Parameter values for the optimal solution obtained during calibration of the revised
model under transient conditions.

Hydraulic
conductivity
x-direction

(m/day)

Anisotropy ratio
in y-direction

(m/day)

Anisotropy ratio
in z-direction

(m/day)

Storage
compressibility

Alluvium 4.87E-02 1.0 5.3 1.00E-04

Volcanic rocks 8.49E-04 1.0 5.3 1.00E-04

Cavity zone 5.28E-04 1.0 5.3 9.00E-04

The comparison between the measured heads and the model results is summarized
in Table 4.5. Figure 4.14a shows the initial head distribution in slice 8 (cavity layer) at
the beginning of the simulation, whereas Figure 4.14b shows the head distribution in the
same layer after 40 years (i.e., the current conditions). It is evident from the figure that
simulating the faults as flow barriers can retain the high pressure pulse within their
boundaries. As a result, the error in well MV-1 decreased to 12 m from 146 m in the
original steady-state model, the error in well MV-2 decreased from 88 m to 34 m, and the
error in well MV-3 decreased from 157 m to 3.6 m. These results indicate that including
the faults as hydraulic boundaries, and including the pressure transient from the nuclear
test, may allow for simulation of the heads observed in the MV wells, especially in the
lower region of the model. A more detailed model with refined discretization,
recalculated boundary conditions, and incorporation of more detailed near-field
conditions may thus be able to reproduce the head distribution observed in the MV wells.
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Table 4.5. Comparison between observed heads and simulated heads for the transient model
40 years after the test.

Field Data Transient Model

# Well Screen Elev. (m) Measured Head (m) Obs. #
Model Head

(m) Sq Error Error

1 HTH-1 1,619.37 1,573.37 1,668.13 1 1,664.32 14.52 3.81

2 HTH-1 1,542.37 1,481.87 1,668.13 2 1,664.40 13.94 3.73

3 HTH-1 1,405.67 1,375.17 1,668.13 3 1,664.53 12.99 3.60
4 HTH-1 1,326.37 1,308.17 1,668.13 4 1,664.74 11.52 3.39

5 HTH-1 1,268.47 1,228.87 1,668.13 5 1,680.48 152.42 -12.35

6 HTH-1 1,161.77 1,131.37 1,668.13 6 1,698.13 899.70 -29.99

7 HTH-1 1,027.67 1,006.37 1,668.13 7 1,712.64 1,980.78 -44.51
8 HTH-1 933.17 914.97 1,668.13 8 1,713.04 2,017.09 -44.91

9 HTH-1 738.37 715.37 1,668.13 9 1,684.57 270.31 -16.44

10 HTH-2 1,655.56 1,500.00 1,667.36 10 1,,664.19 10.05 3.17

11 HTH-2 1,655.56 1,500.00 1,667.36 11 1,664.27 9.58 3.10

12 UC-1-P-1S 1,533.33 1,000.00 1,755.61 12 1,671.34 7,101.77 84.27

13 UC-1-P-1S 1,533.33 1,000.00 1,755.61 13 1,671.74 7,034.34 83.87

14 UC-1-P-1S 1,533.33 1,000.00 1,755.61 14 1,672.35 6,933.06 83.26
15 UC-1-P-1S 1,533.33 1,000.00 1,755.61 15 1,714.50 1,689.70 41.11

16 UC-1-P-1S 1,533.33 1,000.00 1,755.61 16 1,768.19 158.21 -12.58

17 UC-1-P-1S 1,533.33 1,000.00 1,755.61 17 1,839.48 7,034.01 -83.87

18 UC-1-P-2SR 885.00 1,360.00 1,685.34 18 1,672.05 176.76 13.29

19 UC-1-P-2SR 885.00 1,360.00 1,685.34 19 1,711.18 667.71 -25.84

20 UC-1-P-2SR 885.00 1,360.00 1,685.34 20 1,753.80 4,686.91 -68.46
21 UC-1-P-2SR 885.00 1,360.00 1,685.34 21 1,747.73 3,892.26 -62.39

22 UC-1-P-2SR 885.00 1,360.00 1,685.34 22 1,647.72 1,415.04 37.62

23 UC-1-P-2SR 885.00 1,360.00 1,685.34 23 1,691.29 35.41 -5.95

24 MV-1W 757.49 633.74 1,694.89 24 1,665.55 861.13 29.35

25 MV-1L 987.92 884.90 1,809.84 25 1,784.78 627.95 25.06

26 MV-1U 1,630.44 1,545.70 1,753.16 26 1,670.34 6859.81 82.82

27 MV-1U 1,630.44 1,545.70 1,753.16 27 1,670.45 6840.61 82.71

28 MV-2W 994.49 892.99 1,781.62 28 1,798.71 291.90 -17.09

29 MV-2L 847.27 771.07 1,752.69 29 1,691.04 3801.22 61.65

30 MV-2U 1,640.66 1,571.17 1,776.88 30 1,666.72 12,135.01 110.16

31 MV-2U 1,640.66 1,571.17 1,776.88 31 1,666.82 12,112.98 110.06

32 MV-3W 768.09 593.44 1,691.06 32 1,665.77 639.48 25.29

33 MV-3L 946.40 834.24 1,820.89 33 1,865.53 1,992.46 -44.64
34 MV-3U 1,655.98 1,568.80 1,766.77 34 1,670.87 9,196.62 95.90

35 MV-3U 1,655.98 1,568.80 1,766.77 35 1,671.09 9,154.66 95.68
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Figure 4.14. Distribution of head simulated in slice 8 passing through the cavity at a) time zero
(immediately after the test), and b) 40 years after the test.
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Figure 4.15 shows the head distribution simulated in the alluvium, 40 years after the
test. The high pressure pulse has impacted the heads in the alluvium and is still maintained at
high levels within the inner area surrounded by the faults. However, there remain major
discrepancies between the model and the observed heads in the alluvium. The field data show
that the head values at HTH-2 and MV-2 are 1,667 m and 1,776 m, respectively, which
implies that there is a large gradient (0.11) from the west to the east. However, the boundary
conditions that were interpolated from wells throughout Hot Creek Valley (Pohlmann et al.,
1999; Pohll et al., 2003) suggest a low gradient (i.e., 0.002) from north to south. The revised
model could not match the high head values in the alluvium observed at the MV wells, though
the average error in these wells reduced slightly from 101 m (in the steady-state model) to 73
m in the revised model. These results suggest that the faults observed around Faultless may
not only play an important role in persistence of the nuclear-test pressure pulse in the volcanic
section, but may also act as natural hydraulic barriers, dividing the alluvial aquifer into
compartments of similar head separated by zones with very high gradients.

Figure 4.15. The head distribution simulated in the alluvium 40 years after the test.

MV1
MV3

HTH1

MV2

UC-1-P-1S

HTH2



71

5.0 SUMMARY AND CONCLUSIONS

Three monitoring/validation wells were installed at CNTA in 2005. The wells
provided new data (Lyles et al. 2006; U.S. DOE 2006) that are used for the validation process
of the groundwater flow and transport model at Faultless. Data sets regarding lithology,
hydraulic head, hydraulic conductivity, and water chemistry are used. The validation process
for the Faultless stochastic groundwater model detailed in Hassan (2003a, 2004b) and in DOE
(2004) is implemented and the step-by-step procedure is followed using the new data sets.

The collected validation data fall into two broad categories. One category contains the
data pertaining to the model input parameters and the other category pertains to the model-
produced output. Resistivity logs and the resulting lithology profiles that identify the presence
and location of different geologic units (alluvium, tuffaceous sediments, and densely welded
tuff) and the hydraulic conductivity data belong to the first category. Measured heads in the
three wells and the “inferred” gradients from these measurements belong to the second
category.

These data sets are analyzed and are tied to the model cells at their analogous locations
so that comparisons between data and model values could be made. This resulted in 60 model
cells having lithologic data (i.e., identified flow categories), 9 cells having measured heads, 4
cells having measured conductivities, and 6 cell pairs where vertical head gradients are known
from the head data. The lithologic data provided binary type or categorical type data (either
category 1, 2, or 3), whereas the other data sets provided real-number data values. Therefore,
19 real-number validation targets were available plus 60 categorical validation targets.

The validation process (Figure 2.1) was then followed step by step. First, the
calibration accuracy evaluations using the GLUE weights were performed (Step 3). Step 4
involved performing different tests using the validation data and developing the acceptance
criteria measures (P1 through P5). Step 5 was then conducted where the calibration and
validation results were linked and a composite score was developed for each model
realization. Steps 6 and 7 related to making the decision about the model in light of the
resulting measures P1 through P5 , the overall tests of the model, the realization scores, and the
decision chart of Figure 2.2.

The calculated measures P1 and P2 are very low (1 percent and 18 percent,
respectively), and indicate a need for model revision. Other measures such as P3, P4 , and P5
also indicate a major deficiency in the model. Composite realization scores are below a
selected acceptance threshold for all model realizations, supporting the failure of the
validation.

Despite these results, a number of positive aspects about the model have been
identified with the validation data. First, the lithology identified from the resistivity logs
generally matches the lithology used in the model. The contact between the alluvium and
tuffaceous sediments was taken to be uncertain in the original model and the contact
identified from the three wells is invariably within the range of alluvium considered
(i.e., some model realizations portrayed alluvium at the depths identified). Second, the
hydraulic conductivity values obtained from aquifer tests in the three validation wells are
within the distributions used in the model. In fact, all eight hydraulic conductivity validation
targets fall within the inner 95 percent of the model distribution of these targets. Last, no
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tritium was detected in water samples from the wells, consistent with the contaminant
transport predictions for these locations.

The elevated heads in the tuffaceous sediments in the area surrounding the cavity are
believed to be due to the nuclear test itself. The persistence of the high heads may be
attributed to the very low hydraulic conductivity of the volcanic rocks and the down-dropped
block that may have created (or accentuated) barriers to flow. These factors may not have
allowed the pressure pulse around the cavity to dissipate. The original Faultless model
focused on the far-field transport, intentionally neglecting nuclear test impacts that were
assumed to be transient. Given the nuclear test impacts inferred from the MV well
observations, a lack of agreement between the model and field data is not surprising.

The final step in the model validation process (step 7) is an assessment by the decision
makers as to whether the validation results have met regulatory objectives. That assessment
will be a difficult one for DOE and NDEP for CAU 443. The CAU model has clearly not been
validated by the data from the MV wells. A fundamental assumption of the model, that the
nuclear test impacts on the flow field were transient and unimportant over the timescales of
interest, was proved wrong. The consequence of this error is that hydraulic heads are incorrect
in parts of the model and flow directions misrepresented. Nonetheless, the validation data also
reveal a hydrogeologic system characterized by extremely low hydraulic conductivity values
and absence of units that could provide rapid contaminant flowpaths supporting the transport
model finding that no far field transport is expected to occur in the 1,000 year regulatory time
frame.

A simplified three-dimensional model is developed for the purpose of evaluating the
effects on the flow system of the nuclear test and faults that are mapped in the vicinity of
ground zero. This model is run first under steady-state conditions and is found to reasonably
reproduce pre-validation head data available from HTH-1 and HTH-2. Subsequently, it is run
in a transient mode but using an elevated head pulse as an initial condition created by the
nuclear test. The results show that this elevated head pulse persisted for a long time,
simulating much higher heads 40 years after Faultless (present time) at the MV locations, as
compared to the original model. This simple model shows a potential to incorporate the
near-field effects of the test and to simulate a pressure pulse that very slowly dissipates over
time.

A revision of the groundwater model to create a more accurate depiction of the flow
system near Faultless would need to take into consideration the near-field impacts of the test
and the different possibilities of the effects of the down-dropped block on the heads and on
flow directions surrounding the cavity. A major contributor to the decision to neglect near-
field effects in the original model was the lack of data to support such a depiction. That lack
of data remains a significant problem, as the data from the MV wells only reveal the hydraulic
heads affected by Faultless, and do not provide data regarding hydraulic features (such as
faults) and forces (such as pressures). A model including those features will introduce
additional significant uncertainties in the absence of near-field characterization and
assessment.
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