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EXECUTIVE SUMMARY

Ground water flow and solute transport modeling are being performed for
the U.S. Department of Energy (DOE) Feed Materials Production Center
(FMPC) in Fernald, Ohio, to support the ongoing, sitewide remedial
investigation/feasibility study (RI/FS). The purpose of the modeling
during the remedial investigation (RI) is to assess the nature and
extent of the contamination and to support the evaluation of potential
public health and environmental risks. In particular, the evaluation of
the no-action alternative requires the prediction of future conditions
for both on-site and off-site receptors.

A similar application of the ground water flow and solute transport
models will be made in support of the feasibility study (FS). In this
case, however, the focus will be on the short- and long-term effects of
various remedial action alternatives on contaminant source release rates
and on contaminant migration rates. The temporal and spatial variations
of contaminant concentration resulting from the different remedial
actions will also be predicted.

The ground water flow model could also be used as a tool for the concep-
tual design phase of the FS. Therefore, ground water modeling plays an
important role throughout the RI/FS process and a dependable, verified
computer code is critical for reaching sound and defendable

conclusions. The code verification is also a requirement of
International Technology Corporation’s (IT's) Quality Assurance (QA)
Program.

To satisfy project and QA requirements, an extensive and independent
verification study was performed for Version 2.25 of the Sandia Waste-
Isolation Flow and Transport (SWIFT III) code. This code had been
selected to evaluate ground water flow and solute transport for the
overall sitewide RI/FS.
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The objectives of the verification study were to:

e Determine if SWIFT III functions satisfactorily
with respect to well-established ground water
flow/solute transport codes and with respect to
analytical solutions

e Verify the code's capability to model the
compiex, sitewide conditions at the FMPC study
area

 Establish a high level of confidence in the code
capabilities

¢ Correlate with the verification process performed
by GeoTrans to show that the computer code was
fully operational on IT's computer system

* Document the procedures and findings of the veri-
fication process

To make the verification program responsive to the project needs while
minimizing duplication of previous verification efforts, several
guidelines were devised. These guidelines were based on FMPC site
modeling considerations, code capability requirements, and previous
SWIFT III verification activities.

To verify the SWIFT III code, a series of verification problems were
established. The verification process was divided into two parts,
namely ground water flow and solute transport. For each part, several
problems were chosen. The results of the SWIFT III code were compared
with analytical solutions and with results of well-established computer
codes.

The verification study proceeded from simple and idealized problems that
have some relationship with intended model use at the FMPC to more
complex problems representing the FMPC environment. Important features
and characteristics of the site were selected and modeled throughout the
verification process.

(WY
oY
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Based on the extensive verification studies performed on SWIFT III by IT
and GeoTrans, it was concluded that the code has been tested thoroughly,
and will adequately model ground water flow and solute transport
conditions at the FMPC site. Because SWIFT III performs satisfactorily
in relation to other well-established codes, it can be used with a high
degree of reliability and confidence in the sitewide RI/FS modeling
studies.

ES-3
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1.0 INTRODUCTION

Ground water flow and solute transport modeling are being performed for
the U.S. Department of Energy (DOE) Feed Materials Production Center
(FMPC) in Fernald, Ohio, to support the ongoing, sitewide remedial
investigation/ feasibility study (RI/FS). The purpose of the modeling
during the remedial investigation (RI) is to assess the nature and
extent of the contamination and to support the evaluation of potential
public health and environmental risks. In particular, the evaluation of
the no-action alternative requires the prediction of future conditions
for both on-site and off-site receptors.

A similar application of the ground water flow and solute transport
models will be made in support of the feasibility study (FS). In this
case, however, the focus will be on the short- and long-term effects of
various remedial action alternatives of contaminant source release and
migration rates. The temporal and spatial variations of contaminant
concentration resulting from the different remedial actions will also be
predicted. The ground water flow model could also be used as a tool for
the conceptual design phase of the FS. Therefore, ground water modeling
plays an important role throughout the RI/FS process and a dependable
verified computer code is critical for reaching sound and defendable
conclusions. The code verification is also a requirement of
International Technology Corporation's (IT's) Quality Assurance (QA)
Program.

1.1 OVERALL OBJECTIVES OF THE VERIFICATION STUDY

The SWIFT III computer code was selected to evaluate ground water flow
and solute transport for the overall, sitewide RI/FS. At the time of
computer code selection and preliminary application to the hydrogeologic
study of FMPC discharges to the Great Miami River in August 1987, no
verification of the SWIFT III computer code had been documented.
GeoTrans subsequently completed a formal verification of SWIFT III with
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the results published in March 1988. IT initiated an independent
verification study of SWIFT III, with the results published in

November 1987. Generally, the purpose of the verification study was to
validate the accuracy of the computational algorithms used to solve the
governing equations and to determine that the computer code was fully
operational on the IT computer system. The most important purpose,
however, was to test the code capabilities to model FMPC sitewide
features such as site dimensions, and the hydrologic and geochemical
diversities.

Specifically, the objectives of the computer code verification study
were to:
e Determine if SWIFT III functions satisfactorily
with respect to well-established ground water

flow/solute transport codes and with respect to
analytical solutions

e Verify the capability of the code to solve
complex, large-scale problems and to model the
sitewide conditions at the FMPC

e Establish a high level of confidence in the code
capabilities

¢ Correlate with the verification process performed
by GeoTrans to show that the computer code was
fully operational on IT's computer system

¢ Document the procedures and findings of the veri-
fication process

In summary, the overall objective of the verification study was to
document that the SWIFT III code could accurately model the ground water
flow/solute transport processes at the FMPC site.

1.2 VERIFICATION METHODOLOGY
Various methods are used to verify a computer code. One method by which
a computer code can be checked for the accuracy of its theoretical prin-

ciples and of its computational algorithms is by executing selected

1-2
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problems for which analytical (closed-form) solutions exist. In this
method, a model of a problem is developed for simulation by the computer
code. To the extent possible, input data to the analytical and
numerical simulations are made identical. Comparison of results is a
reliable means of verifying the accuracy of the computational method of
the computer code.

Verifying complex numerical computer codes with analytical solutions has
limitations, however. The limitations exist because analytical solu-
tions are only available for simplified conditions. To overcome these
limitations, the results of the computer code which is being verified
are compared with results of other widely accepted and well-verified
codes. Such comparisons assist in verifying the computer code's
capabilities to simulate conditions such as domain heterogeneity and
hydrogeologic stratification, partially penetrating wells, and differing
boundary conditions.

Another method of verification is to compare field data with model simu-
lated results. In this case, a site-specific model is developed which
includes site hydrogeologic and geochemical properties, and other
existing features such as extraction wells. Computer results,

e.dg., ground water (potentiometric) levels, are compared with field
data. A good correlation of field measurements and computer results is
indicative of acceptable code performance.

A1l three methods of verification, namely analytical, numerical, and
field comparisons, were used to verify the SWIFT III computer code. Usé
of the methods and the rationale for their selection are discussed in
Chapter 2.0. In Chapter 3.0, the details of ground water flow
verification are presented, and Chapter 4.0 contains details of
radionuclide and solute transport verification. Summary and conclusions
are presented in Chapter 5.0.
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2.0 VERIFICATION PROCESS

Ground water modeling (flow and solute transport) is a significant part
of the RI/FS program. The model results are used in site characteri-
zation, risk assessment, and remedial action analysis. Because of the
importance of model results in reaching conclusions, RI/FS modeling
should be performed using a well-verified and documented computer

code. To satisfy this requirement, several verification guidelines were
established. The SWIFT III code verification program was implemented
according to these guidelines.

2.1 CODE VERIFICATION GUIDELINES
The guidelines were devised to be responsive to the project needs while
minimizing duplication of previous verification efforts. The guidelines

for the verification process were the following:

e FMPC site modeling considerations
¢ Code capability requirements
e Previous SWIFT III verification activities

These guidelines are discussed in detail in the following sections.

2.1.1 FMPC Site Modeling Considerations

The RI/FS model study area is about 20 square miles. This area
encompasses the FMPC site and adjacent areas which are affected by
pumping wells and Great Miami River. The ground water flow modeling

area is shown in Figure 2-1.

The hydrogeologic setting in the model study area is composed of a
buried channel aquifer which is deeply incised into bedrock. The buried
channel varies in width from about one-half mile to over two miles and
has a U-shaped cross section with a broad, relatively flat bottom and
steep valley walls (Figure 2-2). Bedrock is predominantly flat-lying
shales with thin interbedded layers of limestone. Thick deposits
(exceeding 200 feet) of glacial outwash material composed of coarse

2-1 %1 '
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sands and gravels with interbeds of silts and clays fill the buried
channel. OQOverlying the aquifer in places are variable thicknesses of
glacial overburden material which consists of clays and silty clay
(Figure 2-2).

Site conditions considered important in the development of ground water
flow and solute transport models for the RI/FS process are:

+« Location of the site over a large, irregularly
shaped buried channel aquifer

* Thick, highly permeable aquifer with complex
variations in horizontal and vertical hydraulic
conductivities

* lLocation of major pumping centers in the model
study area which influence the aquifer potentio-
metric level over large areas

* Pumping at depth (partially penetrating wells)
within the sand and gravel aquifer

* Llarge changes in horizontal hydraulic gradients
across the study area

» The presence of vertical hydraulic gradients
within the study area, possibly induced by local

pumping
* Complex river and aquifer interactions

* Uncertainties of areal recharge through varying
hydrogeologic zones composed of till, floodplain,
and alluvial deposits

* Presence of several potential contaminant source .
areas with different strengths and periods of
release as well as several types of potential
receptors

Chemical and radiological contaminants associated with the FMPC site

most likely would have been introduced to the aquifer from one or more
of the following:

2-2 2 4
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e Leaky waste pits in the waste storage area
e Discharges to and leakage from Paddys Run

e Discharges to and leakage from the storm sewer
outfall ditch

* Leakage from the main effiuent line

e Waste or product spills in the Production Area
and other potential waste disposal areas within
the FMPC site

e Any facility in the Production Area used for the

storage, containment, or transfer of radiological
or chemical material

Based on these site conditions, it was necessary to develop three-
dimensional ground water and solute transport models.

2.1.2 Code Capability Reguirements

To satisfy the site modeling considerations presented above, it was
necessary to verify that the SWIFT III code had the capability to
simulate the specific site features and study requirements, including:

¢ The capability to incorporate complex site hydro-
geology including variable aquifer thickness,
hydraulic conductivity, different stratigraphic
units, and partially penetrating wells.

» The capability to model simultaneously an
unconfined aquifer and a river, in case
unsaturated flow beneath the river or waste
storage units is eventually found to be a
critical process.

e The capability to model decay chains. Although
the radionuclides of most concern do not require
the consideration of daughter products, this
would become a consideration if other radio-
nuciides are found to be important.

¢ The capability to accurately represent attenu-
ation/retardation (e.g., adsorption) and decay
processes so as to provide flexibility in the
range of constituents that can be modeled.

25
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» The capability to handle a wide variety of bound-
ary conditions so as not to 1imit the available
options for best representing actual site
conditions.

In addition to verifying the SWIFT III capabilities to satisfy the above
requirements, an appreciation was developed for the usage convenience of
the code. The e]ementé considered in this process were the code
postprocessing capabilities, user documentation, mesh generation,
solution method, restart capability, and applicability to available
computer systems.

2.1.3 Previous SWIFT III Verification Activities

The SWIFT model code was originally developed by Sandia National
Laboratories (SNL) for the Nuclear Regulatory Commission (NRC) for use
in the high-level nuclear waste isolation program. The first extension
of the SWIFT code was made by GeoTrans and was given the title SWIFT II.

Compariéons of results from the SWIFT II code and analytical solutions
appear in many documents. Results of the SWIFT II model applications
have also been compared with data collected in numerous field studies.
The comparisons provide evidence that the equations solved in the model
properly simulate observed hydrogeologic behavior. Applications of the
code to actual sites have also appeared in several reports, the most
noteworthy are those appearing in Ward, et al. (1984) and Reeves, et al.
(1986), which are summaries of the model verification process and field
comparisons.

Modifications to the SWIFT II code were made by GeoTrans in 1987. A
primary modification consisted of changing the code from FORTRAN IV to
FORTRAN 77 to make the code more generally usable. Modifications were
also made for data input and output simplification. The resultant code
was called SWIFT III and is the subject of the verification study being
reported herein.

2-4 26
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GeoTrans and IT concurrently were conducting verification work to test
the validity of several features of the SWIFT III code. In late
February 1988, IT was notified of the SWIFT III (Version 2.25) verifica-
tion work being performed by GeoTrans. The results of GeoTrans' work
have been published and were made available to IT (GeoTrans, Inc.,

'1988). With this information, IT reevaluated its verification

program. The purpose of this reevaluation was to minimize the
duplication of effort while satisfying the previously established
verification requirements.

2.2 OQVERVIEW OF IT'S VERIFICATION PROCESS
The SWIFT III code is a three-dimensional finite-difference computer

code that solves the coupled equations for the following four
processes: (1) fluid flow, (2) heat transport, (3) dominant-species
(brine) miscible displacement, and (4) trace-species (radionuclides)
miscible displacement. The first three processes are coupled via fluid
density and viscosity. These coupled processes provide the velocity
field required in the fourth process. The code has Cartesian and
cylindrical coordinate options.

To verify the SWIFT III code, a series of verification problems were
established. A "verification problem" is defined as a set of conditions
and features for which analytical or numerical solutions exist that can
be used to check the SWIFT III model results. Each problem has been
uniquely named and that name has been used throughout the text, tables,
and figures. The ground water flow problems are identified by "GWF" and
the solute transport problems by "ST".

The verification study proceeded from simple and idealized problems that
have some relationship with intended model use at the FMPC to more
complex problems representing the FMPC environment. Important features
and characteristics of the site were selected and modeled throughout the
verification process. Among the criteria used to select the problems
were the following: | '
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* The problem must use Cartesian coordinates con-
sistent with the geometric system of the sitewide
model

¢ The problem must represent some important charac-
teristic or feature of the site, including:

- Constant head boundary condition
- Anisotropic media
- Constant recharge

- Extraction and injection wells with full and
partial penetration

- Multiple layer aquifers
- River leakage and recharge
- Radionuclide decay and generation of daughter

products

The remainder of this section discusses the rationale for the
verification process. The process used for verifying the ground water .
flow model and that used for the radionuclide and solute transport mode
are presented separately.

2.2.1 Ground Water Flow Verification

The problems selected for ground water flow verification were based on
analytical solutions, numerical simulations, and field data comparisons.

2.2.1.1 Selection of Problems With Analytical Solutions

To correlate the results of IT's verification study with the
verification work previously pérformed by GeoTrans, a replication of
some of GeoTrans' verification problems was made. Among the problems
chosen from the GeoTrans verification manual (Ward, et al., 1984) were
two two-dimensional problems for which analytical solutions exist. The
first problem (GWF-1) is the well-known Theis solution (Theis, 1935) for
a fully penetrating well in a homogeneous and isotropic confined
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aquifer. The second problem (GWF-2) is for a fully penetrating well in
an anisotropic confined aquifer (Papadopulos, 1965). The solutions to
these problems assume that the flow is transient and the aquifer is
confined with constant transmissivity.

To check the features of the code for an unconfined aquifer condition,
two additional two-dimensional problems for which analytical solutions
exist were selected from the set provided by GeoTrans. The first
problem (GWF-3) was the Dupuit-Forchheimer solution for a steady-state
unconfined aquifer with recharge (Bear, 1972). The second prob]em
(GWF-4) was the Boussinesq solution (Bear, 1972) for an unconfined
aquifer for a transient condition. These problems were selected because
unconfined conditions are significant to the FMPC modeling activities.

2.2.1.2 Selection of 2-D and 3-D Numerical Problems
Code-to-code comparisons, independent from the GeoTrans verification

"study, were made to check some additional capabilities of the SWIFT III

code. These comparisons were made on a two-dimensional (2-DB) FMPC
sitewide ground water flow model and on a three-dimensional (3-D) hypo-
thetical grid system given by Finley and Reeves (1982). The
verification study was based on comparisons with the results of other
well-verified and widely-accepted ground water codes, namely: the U.S.
Geological Survey's modular three-dimensional ground water flow code,
MODFLOW (McDonald & Harbaugh, 1984); IT's proprietary quasi-three-
dimensional ground water flow and solute transport code, GEOFLOW
(IT Corporation, 1986); and the three-dimensional ground water flow and
solute transport code, Princeton Transport Code (PTC), deQe]oped at
Princeton University (Babu, et al., 1987). A brief description of these
codes is presented in Appendix A. By appropriate use of these three
codes, compariso;s were made to determine the capability of the
SWIFT III code in simulating the following features:

* Model domain heterogeneity

Hydrogeologic stratification
e Partially penetrating wells
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e Nonuniform recharge rates
e Aquifer-river interactions

A sitewide 2-D flow problem, GWF-5, was developed for the verification
study to include all the specified features for ground water flow
comparisons except partial penetration. These features include:

Varying hydraulic conductivity distribution
Nonuniform recharge

Meandering of the Great Miami River
Nonuniform aquifer base elevations
Constant-head and no-flow boundary conditions
Spatial variation of extraction wells

In this verification step, comparisons were made of potentiometric
levels, Darcy velocity components, and river leakages between the
results of SWIFT III and the results of GEOFLOW and MODFLOW.

A hypothetical three-dimensional problem was selected to supplement the
two-dimensional sitewide example problem discussed above. This problem,
GWF-6, consisted of three model layers and included partially pene-
trating wells. The significant characteristics of this problem are as
follow:

* Partially penetrating extraction and injection
wells

s Confined and unconfined aquifer conditions
s A river in the uppermost layer

* (Constant-head and no-flow boundary conditions at
the boundaries of different layers

» Constant recharge at the uppermost layer

Comparisons of potentiometric levels, Darcy velocity components, and
river leakages were made between the results of SWIFT III and the
results of MODFLOW and PTC.
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2.2.1.3 Field Comparisons

The calibration process used during the sitewide modeling constitutes a
form of field verification (Heijde, 1987). The ground water flow cali-
bration has been successfully performed as part of RI/FS modeling
activities and will be reported upon in the RI/FS model documentation.

2.2.2 Radionuclide and Solute Transport Verification
The following subsections discuss the rationale for selecting the

problems for solute transport verification of the SWIFT III code.

2.2.2.1 Selection of Problems With Analytical Solutions
The analytical solutions for solute transport available in the litera-

ture are limited to uniform ground water flow velocity. These analyti-
cal solutions are based on either the constant concentration (first-type
or Dirichlet) boundary condition or constant solute flux (third-type or
Cauchy) boundary condition. For the Fernald site, the solute flux
boundary condition is appropriate; therefore, in the verification
process, analytical solute transport models with the solute flux
boundary conditions were used to validate the SWIFT III code.

Two analytical solutions with the solute flux boundary condition with
uniform ground water flow velocity were used. To correlate with the
verification work previously performed, a one-dimensional problem of
radionuclide transport with the chain-decay (Ward, et al., 1984) was
selected from the GeoTrans verification manual. This solution was
developed by Coats and Smith (1964). The verification problem in this
study is named ST-1. The second problem, ST-2, consists of solute
transport from a strip solute source located between two impervious
boundaries in a uniform ground water flow field with a constant solute
flux- (third-type) boundary condition. The analytical solution to this
problem and its related computer program (STRIP1B-FBC-G) were developed
by IT (1987). The program has been previously verified against both
analytical cases and numerical codes. The solution and its associated
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initial and boundary conditions, as well as comparisons with GEOFLOW,
are documented in the GEOFLOW manual (IT, 1986).

The SWIFT III code was also checked against GEOFLOW with the conditions
of Problem ST-2. This comparison constituted an independent numerical

verification.

2.2.2.2 Selection of Probiem With Numerical Solutions

The performance of the SWIFT III code in three-dimensional solute
transport simulation was evaluated against a GEOFLOW vertical model. By
assigning appropriate input data and boundary conditions in the

SWIFT III 3-D model, it was possible to produce conditions such that
vertical slices of that 3-D model would be identical. One vertical
slice was made then simulated using a GEOFLOW vertical model. This
procedure enabled the examination of the accuracy of the SWIFT III
solute transport predictions in the vertical direction, which is an
important consideration at the FMPC site. The problem which utilized
this procedure was named ST-3.

2.3 SUMMARY OF VERIFICATION STUDY PROBLEMS
A summary of the ground water flow and solute transport problems used in
the IT verification program is presented in Tables 2.1 and 2.2. The

verification work by GeoTrans is also shown in these tables. A review
of these tables indicates that the SWIFT III code has undergone compre-
hensive testing in various modes applicable to its use at the FMPC site.

It is concluded that the code can be used with a high degree of
reliability and confidence in the sitewide RI/FS modeling studies. The
efficiency of code usage could benefit from improvement of the user's
manual and of pre- and post-processing features.
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SWIFT Il CODE GROUND WATER FLOW VERIFICATION

PROBLEM ANALYTICAL NUMERICAL FIELD ANALYTICAL NUMERICAL FIELD
TYPE SOLUTIONS SOLUTIONS COMPARISON SOLUTIONS SOLUTIONS COMPARISON
FULLY PENETRATING WELL ® HYDRAULIC TESTING FOR GWF—1 GWF—5
CONSTANT DISCHARGE THERMAL ENERGY ® FULLY PENETRATING WELL, | ® COMPARISON OF ACTUAL -
HOMOGENEOUS ISOTROPIC STORAGE IN AN AQUIFER EONSTANT DISCHARGE S Oy CEOFLOW
ggg';'ENs?gNAgggfgh ATES TO COMPARE HOMOGENEOUS ISOTROPIC AND MODFOLW CODES
—  PRESSURE SOLUTIONS CONFINED AQUIFER, FOR FLOW IN AN
_ CARTESIAN COORDINATES UNCONFINED AQUIFER WITH
FULLY PENETRATING WELL ANISOTROPIC AQUIFER IRREGULAR BOUNDARIES
CONSTANT DRAWDOWN CHARACTERISTICS CWF—2 AND STEADY—STATE
HOMOGENEOUS, ISOTROPIC NOT DOCUMENTED IN = INJECTION AND FLOW
TWO AQUIFER CONFINED THE AVAILABLE USER OBSERVATION WELL ® FULLY PENETRATING WELL
DIMENSIONAL RADIAL COORDINATES MANUALS OR RESPONSES CONSTANT DISCHARGE,
VERIFICATION REPORTS —  FLOW FROM AQUITARDS ANISOTROPIC CONFINED
FULLY PENETRATING WELL - ,,- AQUIFER, CARTESIAN NOT NECESSARY
EFFECTS OF AQUIFER COORDINATES
HORIZONTAL ANISOTROPIC BOUNDARIES
CONFINED AQUIFER, CWF—3
CARTESIAN COORDINATES ® DUPUIT-FORCHHEIMER
FULLY PENETRATING WELL, STEADY STATE PROBLEM
LEAKY HOMOGENEOUS — TO SIMULATE FLOW ‘
JSOTROPIC CONFINED FROM A FREE—WATER {
AQUIFER, RADIAL '
COORDINATES SURFACE
' GWF—4
® BOUSSINESQ TRANSIENT
DRAWDOWN
GWF—6a, 6b, 6c, 6d
® COMPARISON OF SWIFT I ® CALIBRATION OF SITE—
RESULTS WITH RESULTS SPECIFIC MODEL TO
FROM MODFLOW AND PTC FIELD DATA
CODES
THREE NOT DOCUMENTED IN NOT DOCUMENTED IN NOT DOCUMENTED IN
DIMENSIONAL THE AVAILABLE USER THE AVAILABLE USER THE AVAILABLE USER

MANUALS OR

* VERIFICATION REPORTS

MANUALS OR
VERIFICATION REPORTS

MANUALS OR
VERIFICATION REPORTS

NOT NECESSARY
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TRANSPORT VERIFICATION
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3.0 GROUND WATER FLOW VERIFICATION

In this chapter the technical details of the ground water verification
problems are presented. As discussed in Chapter 2.0, each problem has
been selected to examine a combination of SWIFT III features relevant to
the FMPC site. The SWIFT III simulations are checked against analytical
and/or numerical solutions. In addition, model calibration has been
used as a basis for examining the performance of the code against field
data.

The following format is used to present the methodology and results of
each verification problem:

Problem name

Purpose of problem selection

Problem description

Assumptions

Analytical solution (where applicable)
SWIFT III numerical simulation

Input specifications

Output specifications

Results

Table 3.1 has been prepared to summarize the features of the verifi-
cation problems and it includes problem name, model features to be
tested, and figure and table references related to each problem. The
computer file names associated with each verification problem are
presented in Table B.1 of Appendix B.

Either English or Standard International (SI) units are used to maintain
consistency of units used by the originators of the verification
problems. To assist the reader, data are generally presented in both
units.

3.1 VERIFICATION PROBLEMS.- ANALYTICAL SOLUTIONS
The following four two-dimensional problems with analytical solutions

were selected for use in verifying the SWIFT III ground water flow

model: 3 5
3-1-
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¢ Fully penetrating well with constant discharge
(Problem GWF-1)

* Fully penetrating well in a horizontal
anisotropic aquifer (Problem GWF-2)

¢ The Dupuit-Forchheimer Steady State Problem
(Problem GWF-3)

¢ The Boussinesq Transient Problem (Problem GWF-4)

Problems GWF-1 and GWF-2 were selected from the document "Verification
and Field Comparison of the Sandia Waste-Isolation Flow and Transport
(SWIFT) Model" (Ward et al., 1984). Problems GWF-3 and GWF-4 were
chosen from the "SWIFT II Self-Teaching Curriculum" (Reeves et al.,
1986). The input data for these problems are exactly the same as the
input data given in "SWIFT III Quality Assurance Benchmark Problem
Execution Fiche" (GeoTrans, 1988). These problems were executed on IT's
PRIME 750 and PRIME 316 EXL computers. Details of these problems and
results are discussed in the following sections. Input parameters for
these problems are given in Table 3.2.

3.1.1 Problem GWF-1: Fully Penetrating Well with Constant Discharge

3.1.1.1 Purpose of Problem Selection

Problem GWF-1 was selected to test the following aspects of the
SWIFT III code:

Confined aquifer

Transient pressure solutions

 (Cartesian coordinates
* Constant pumping rate

3.1.1.2 Problem Description

A description of this problem is given in Ward et al. (1984, pp. 2-1 to
2-3). The same description can also be found in Bear (1979, pp. 320 to
321) or Freeze and Cherry (1979, pp. 315 to 318).

37
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A well fully penetrates an infinite confined aquifer and water is
extracted at a constant rate, as depicted in Figure 3-1. The partial
differential equation describing saturated flow in a confined aquifer in
radial coordinates is given by Equation 3.1:

13 asy _ ¢ 3S
T—Fﬁ(ra—r)—sat (3.1)
where
2/t]

transmissivity [L
storativity [dimensionless]

drawdown [L]
radial distance [L]
time [t]

&+ 5 n u»v —
]

The boundary and initial conditions are as follows:

s (r, t=0) =0, rz=0 (3.2)
s (r==,t) =0, t=20 (3.3)
Q =0, t=20 (3.4a)
Q = constant > 0, t>0 (3.4b)

where
Q = extraction rate [L3/t]

3.1.1.3 Assumptions
The following assumptions are made:

e The aquifer is of infinite areal extent
* The aquifer is confined with no leakage

e The aquifer is homogeneous, horizontal,
isotropic, and of uniform thickness

o
0w

3-3
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¢ The static potentiometric surface is horizontal
e Water is extracted at a constant rate
e The extraction well penetrates the entire aquifer

e The diameter of the extraction well is suffic-
jently small that its internal storage may be
neglected

* Darcy's law applies throughout the system, and
nonlaminar flow near the well may be neglected

3.1.1.4 Analytical Solution

The analytical solution to this problem is given in Ward et al.
(1984, pp. 2-3 to 2-4). The same solution can also be found in Bear
(1979, pp. 320 to 321) and Freeze and Cherry (1979, pp. 315 to 318).

To solve Equation 3.1 for an aquifer of infinite areal extent, it is
assumed that the well radius is infinitesimally small. .The following
boundary condition is, therefore, applicable:

Tim (r 28 = - Q| t>0 (3.5)
r+0 ar 2nT

The solution of Equation 3.1, subject to the conditions of
Equations 3.2, 3.3, 3.4, and 3.5, is the Theis solution:

s = Z%T W(u) (3.6)

where the dimensionless variable, u, is defined by:

.2

)

w

us= (3.7)

pam
ot

3-4
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and W(u) is the familiar well function (see Reed [1980] for numerical
values of this function):

W - 12 £ a (3.8)

3.1.1.5 SWIFT III Simulation

Significant aspects of the numerical simulation of Problem GWF-1 are
presented in Ward, et al. (1984, pp. 2-7 through 2-9), and are partly
restated below.

The SWIFT III code solves the ground water equation (Equation 3.1) both
in Cartesian and radial coordinates. For this verification problem, the
Cartesian option was selected. The SWIFT III program solves for
pressure as the dependent variable. The pressure must then be converted
to potentiometric level and drawdown by separate calculations external
to the SWIFT III code.

-1

In the SWIFT III simulation, a finite well bore of radius T is
considered at the inner model boundary. The effect of this finite
radius is confined to a region of several well bore radii surrounding
the origin, and therefore does not discredit the comparison of results
with an analytical solution for which the well is infinitesimally
narrow. The value used for the well radius is given in Table 3.2.

By taking advantage of mode symmetry within a Cartesian coordinate
system, efficiency was gained through the use of only a quarter segment
of the entire area as defined in the analytical solution. A
15-by-15-block grid was utilized with block dimensions ranging in size
from 1 m (3.28 feet) at the well to 4,096 m (13,435 feet) at the outer
extremity of the grid. No-flow symmetry conditions were applied along
the coordinate axes and a Carter-Tracy condition was used at the outer
extremity of the system. |
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3.1.1.6 Input Specifications

The input parameters for this example are given in Table 3.2. These
data were taken from the "SWIFT III Quality Assurance Benchmark Problem
Execution Fiche" (GeoTrans, 1988, File Name: VFCl), and were used
directly in the verification process. The simulation period was

100 days.

3.1.1.7 Output Specifications

The output for this problem consists of pressure as a function of time
and distance. By separate calculations, the resultant pressure was
converted to hydraulic head, from which the drawdown was then derived.

3.1.1.8 Results

Drawdown as a function of time at 100 meters (328.0 feet) and as a
function of distance at 100 days are given in Figures 3-2 and 3-3,
respectively. The comparison of the SWIFT III results with the
analytical solution is also depicted in these figures. Review of
Figures 3-2 and 3-3 indicates that SWIFT III slightly overestimates
drawdown when Cartesian coordinates are used. This overestimation is
well within acceptable tolerance limits and is common to all other codes
when Cartesian coordinates are used. The same results are also
presented by Ward et al. (1984, pp. 2-10 to 2-11), thereby demonstrating
that the SWIFT III code performs on the IT computer system in a manner
comparable to other computer systems on which the code has been tested.

3.1.2 Problem GWF-2: Fully Penetrating Well in a Horizontally
Anisotropic Aquifer

3.1.2.1 Purpose of Problem Selection

Problem GWF-2 was selected to test the following aspects of the
SWIFT III code:

Confined aquifer
Transient pressure solution
* Two-dimensional Cartesian coordinates

3-6 | 43
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Constant pumping rate
e Anisotropic hydraulic conductivity distribution

3.1.2.2 Problem Description

A description of this problem is given in Ward, et al. (1984, pp. 2-19
and 2-20). The same description can also be found in Papadopulos
(1965).

A well fully penetrates an infinite confined aquifer and water is
extracted at a constant rate, as shown schematically in Figure 3-1. The
aquifer is anisotropic and is parallel to the horizontal plane. If the
coordinate axes (x and y) are aligned with the principal axes of the
transmissivity tensor, the equation to be solved can be written as:

2 2
T 2347 25 404(x) s(y) =S (3.9)
X 8X2 y ayz at
where
% = transmissivity in the x-direction [Lz/t]
T, = transmissivity in the y-direction [L2/t]
s = drawdown [L]
S = storativity [dimensionless]
Q = pumping rate [L3/t]
6§ = Dirac delta function [1/L]

A coordinate transformation could be performed to facilitate the
solution of this equation, namely:

X=x and § = (TX/Ty)l/Zy (3.10)
This would, in effect, reduce the problem to the isotropic case, with
the well-known Theis solution. This transformation is not considered

further because the primary objective of this verification problem is to
test the anisotropic simulation capabilities of the SWIFT III code.

46
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The boundary and initial conditions are:

s(x, y, t =0) =0, x20 and y=20 (3.11)
s(x =to, y,t) =0, t>0 (3.12)
s(x, y=tw,t) =0, t>0 (3.13)

Q =0, t=0 (3.14)
Q = constant > O t>0 (3.15)

3.1.2.3 Assumptions
The assumptions in Section 3.1.1.3 are also valid for this problem, with

the exception that the aquifer is anisotropic, in the current case.

"3.1.2.4 Analytical Solution

The analytical solution for this problem was developed by Papadopuios
(1965) and is also given in Ward et al. (1984, p. 2-20) and Reed (1980).

The solution of Equation 3.9, subject to the conditions of
Equations 3.11 through 3.15, is as follows (Reed, 1980):

s 177 W(u,) (3.16)

4n (TXTy)

where the dimensionless variable, u, is given by:

2 2
T x T,y :
Uyy = %E X Y (3.17)
Xy
and W (uxy) is-the familiar well function. 47
3-8



INTERNATIONAL TECHNOLOGY CORPORATION

3.1.2.5 SWIFT III Simulation
The numerical simulation is discussed in Ward et al. (1984, pp. 2-21 and
2-22) and is summarized below.

The grid system for this simulation is similar to that used for

Problem GWF-1, except that three additional rows of elements were added
in the x-direction, thus extending the system length from 8,147.5 to
65,542 meters (26,730.6 to 21,5032.8 feet). The reason for this
addition is that the cone of depression of an anisotropic aquifer is
elliptical, thus requiring a larger domain in the direction of the major
axis, in this case the x-direction. This is not an exact symmetric
section of the areal plane surrounding the well. However, because of

the small geometric discrepancy, the effects are expected to be
negligible.

The infinite boundary condition of Equations 3.12 and 3.13 are
approximated by no-flow conditions at the outer periphery of the system.

- This selection of these boundary conditions is valid because the cone of

depression is not likely to extend to the finite boundaries during the
maximum simulation period of 100 days. That is, the cone of depression
should be well contained in the 65.5 km x 8.1 km region being modeled.

3.1.2.6 Input Specifications

The input data parameters for this problem are given in Table 3.2. The
input data for this problem were taken directly from the "SWIFT III
Quality Assurance Benchmark Problem Execution Fiche" (GeoTrans, 1988,
File Name: VFC7), and was used directly in the verification process.
The total simulation period, as indicated earlier, was 100 days.

3.1.2.7 Output Specifications

The output for this problem consists of pressure as a function of time
and distance. Again, the pressure values were converted to hydraulic
head and drawdown in a procedure external to the SWIFT III code.

3.9 48
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3.1.2.8 Results

The same results found by Ward et al. (1984, pp. 2-23 and 2-24) were
obtained by IT. The values of drawdown versus time and distance for
this problem are presented in Figures 3-4 and 3-5, respectively. The
drawdown as a function of time was determined at the point x =

332.9 feet, y = 1.6 feet (Figure 3-4). Drawdown along both the x and y
axes as a function of distance were plotted at 100 days (Figure 3-5).
These drawdown curves again indicate that the SWIFT III results compare
well with the analytical solution of Papadopulos.

3.1.3 Problem GWF-3: The Dupuit-Forchheimer Steady-State Problem

3.1.3.1 Purpose of Problem Selection
Problem GWF-3 was selected to test the following aspects of the SWIFT
IIT code:

Unconfined aquifer

Steady-state pressure solution
Two-dimensional Cartesian coordinates
Recharge

Constant-head boundary condition

3.1.3.2 Problem Description

A description of this problem is given in Reeves et al. (1986, p. 70).
The same description can also be found in Bear (1972, pp. 366 to 367).

A phreatic aquifer of length, L (Figure 3-6) with constant ground water
elevations:

h(x = 0,t)

]
=

(3.18)
and

h(x = L,t)

]
=2

L | (3.19)

is subjected to surface recharge at a rate, q. The ground water
elevations, h, and h , are defined as the height of the water table

19

3-10
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above an impervious bottom, and thus represents the saturated thickness
at x = 0 and x = L (Figure 3-6). The objective of this problem is to
determine the steady-state ground water elevation, h(x), at any distance
x between x = 0 and x = L.

The governing equation for this problem for the steady state condition
is (Bear, 1972):

3 ah a
S (Kh2) +q=0 (3.18)

where
q = recharge [L/t]

The above is known as the Forchheimer equation.

3.1.3.3 Assumptions
The assumptions are the following:

« The aquifer is unconfined with no leakage at the
bottom

e The aquifer is homogeneous and isotropic
e Darcy's law applies throughout the system

 Constant recharge

3.1.3.4 Analytical Solution

The analytical solution of Equation 3.18 is the Dupuit-Forchheimer
parabola:

2

- hE = (nf - hg)% + %;(L-x)x (3.19)

in which h0 and hL are the saturated thicknesses at x=o0 and x=L,
respectively.

93
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The analytical solution is given in Reeves et al. (1986, pp. 70 to

73). The same solution is also given in Bear (1972, pp. 366 to 367).
Because the analytical solution neglects the vertical component of flow,
a one-dimensional solution along the x-coordinate results

(Equation 3.21).

The flow rates at the boundaries are given by:

~

=X _pdy - &
Uy = 31 (ho - hL) -3 (3.22a)
K 2 20 qL

The first term on the right-hand side of the equations represents the
flow resulting from the difference in heads across the system. This
rate is the same for both ends. The second term arises from the surface
recharge.

3.1.3.5 SWIFT III Simulation

A two-dimensional vertical cross-section with a 20 by 20 grid was used
to simulate Problem GWF-3. Constant ground water elevations of 0.75 and
0.25 meters were assigned at the boundaries. The distance between these
boundaries was 20 meters. Additional discussions on the numerical
solution can be found in Reeves et al. (1986, p. 73).

3.1.3.6 Input Specifications

The input data for this problem are given in Table 3.2. The input data
are identical with the "SWIFT III Quality Assurance Benchmark Problem
Execution Fiche" (GeoTrans, 1988, File Name: STC2-8).

o4
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3.1.3.7 Output Specifications
The output for this problem consisted of steady state pressures, which
have been converted to ground water surface elevations.

3.1.3.8 Results

The values of ground water elevation versus distance for both the
analytical solution and the model are depicted in Figure 3-7. The same
results are also presented in Reeves et al. (1986, p. 77). The results

indicate very good agreement between the analytical and numerical
solutions.

3.1.4 Problem GWF-4: The Boussinesq Transient Problem

3.1.4.1 Purpose of Problem Selection
Problem GWF-4 was selected to test the following aspects of the SWIFT
IIT code:

Unconfined aquifer

Transient pressure solution
Two-dimensional Cartesian coordinates
Constant-head boundary condition

3.1.4.2 Problem Description

Description of this probliem is given in Reeves et al. (1986, p. 79).
The same description can also be found in Polubarinova-Kochina
(1962, pp. 508 to 512) and Bear (1972, pp. 381 to 384).

The problem considered is a semi-infinite phreatic aquifer (Figure 3-8),
which is initially saturated such that:

h(x,0) = h, (3.23)

where h is the elevation of the ground water table above an impervious
bottom (equivalent to saturated thickness) as defined in Figure 3-8.

3-13 53
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For t > 0, the saturated thickness at x = o end is reduced to half of
its original value, i.e.

h
h(0,t) = —‘2’- (3.24)

No recharge occurs through the upper surface. The objective is to
determine the ground water surface elevation, h(x, t), as a function of
position and time.

3.1.4.3 Assumptions
The assumptions are the following:

¢ The aquifer is unconfined with no leakage
s The aquifer is homogeneous and isotropic
* Darcy's law applies throughout the system

3.1.4.4 Analytical Solution
The analytical solution is given in Polubarinova-Kochina (1962, p. 511)
and Bear (1972, p. 384).

Transmissivity is taken to be proportional to the saturated thickness,
h, and flow is assumed to be horizontal. The equation of continuity
(Bear, 1972) is:

3 ah 3h
% (Kxh 3;) o =% (3.25)
where
Kx = horizontal hydraulic conductivity [L/t]
h = saturated thicknesé (L]
¢ = porosity [dimensionless]

Equation 3.25 is the Boussinesq equation. The Polubarinova-Kochina

general solution for this nonlinear equation is presented in Bear (1972,

p. 384). A dimensionless form of this solution is presented in

Figure 3-9 using normalized ground water elevation versus normalized

time coordinates. ' : .
3-14 o8
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3.1.4.5 SWIFT III Simulation

A two-dimensional grid is used in the numerical simulation of the
problem. The grid length is 5.8 meters and the initial ground water
elevation is 1.0 meters. To approximate the assumption of
one-dimensional flow in the analytical solution, a relatively high
vertical hydraulic conductivity, K,, was chosen for the numerical
solution. By this approach, flow in the x-direction dominated the
numerical solution. Other aspects of the numerical solution are
discussed in Reeves et al. (1986, pp. 79 to 87).

3.1.4.6 Input Specifications
The input data for this problem are given in Table 3.2. The input data
for this problem are identical to the "SWIFT III Quality Assurance

Benchmark Problem Execution Fiche" (GeoTrans, 1988, File Name: ST(C2-9).

3.1.4.7 Output Specifications

The output for this problem was the transient pressure distribution,
which has been converted to ground water elevations for purposes of
direct comparison with analytical results.

3.1.4.8 Results

The normalized ground water elevation versus normalized time values for
two different locations along the x-axis are plotted in Figure 3-9.
These locations are at 0.25 meters and 0.125 meters from the origin, as
shown in Figure 3-8. Similar results have been obtained by Reeves et
al. (1986, p. 82). Review of Figure 3-9 indicates that for small
elapsed times i.e., when the value of the term g//fﬁfa)is large, the
SWIFT IIT computed ground water surface declines more rapidly than that
of the analytical solution. Even in this case, however, the relative
difference between the analytical and model results is only a few
percent. As time increases the agreement improves and the discrepancy
becomes very small.

3-15
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3.2 VERIFICATION PROBLEMS - NUMERICAL SOLUTIONS
As discussed in Chapter 2.0, comparisons were made of two- and three-

dimensional numerical ground water flow simulations using different
codes to further verify the performance of the SWIFT III code. For a
two-dimensional simulation, the GEOFLOW and MODFLOW computer codes were
used as the basis for comparison with the SWIFT III Code. A grid system
previously established by IT for a separate study at the FMPC (IT 1988)
was used for this simulation. This verification exercise is defined as
Problem GWF-5.

Three-dimensional ground water flow simulations were also made with
SWIFT III, MODFLOW, and PTC. These simulations were made using

Problem GWF-6. The SWIFT III results were compared with those of
MODFLOW and-PTC. A three-dimensional hypothetical grid, given in Finley
and Reeves (1982, p. 4), was selected for this simulation. Several code
features relevant to the FMPC site were tested with Problem GWF-6.

Details .of the numerical simulations and results are discussed in the
following sections.

3.2.1. Problem GWF-5: Two-Dimensional Comparisons

3.2.1.1 Purpose of Problem Selection
Problem GWF-5 was selected to test the combination of the following
capabilities of the SWIFT III code:

e Unconfined aquifer
e Steady-state pressure solution
* Two-dimensional Cartesian coordinates

* Irregular boundaries and variable aquifer
thickness

e Variable hydraulic conductivity

e (onstant-head and no-flow boundary conditions

3-16
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e Nonuniform recharge
e Irregular river curvature

¢ Constant rate pumping of wells

3.2.1.2 Problem Description

The sitewide simulation area for Problem GWF-5 is shown in Figures 3-10
or 3-11. This area was used in the Zone of Influence Study and includes
the area under the possible influence of the Southwestern Ohio Water
Company (SOWC) extraction (collector) wells, located within and near the
major bend in the river east of the FMPC.

The aquifer in the study area is comprised of highly permeable, well-
sorted sands and gravels and was modeled as an unconfined aquifer. The
model area has basically three zones. The presence or absence of a till
layer over the sand and gravel aquifer differentiates two of these
zones. Bedrock outcrops form the third zone. The aquifer has the
potential to receive recharge from the l1and surface and from the Great
Miami River. Four active extraction (collector) wells exist in the
study area and were included in the model. One additional well, SOWC 3,
is shown on the figures but is used on a standby basis only and,
therefore, it was not used in the modeling.

Because of certain characteristics of the codes used in this verifi-
cation problem, and because of the need for accurate comparisons between
the codes, two different grids were used in the problem solution. SWIFT
IIT and MODFLOW are block-centered finite-difference codes. The two-
dimensional grid system for the SWIFT III and MODFLOW models is shown in
Figure 3-10. GEOFLOW is a node-centered finite element code. The two-
dimensional grid system for the GEOFLOW model is shown in Figure 3-11.
The nodes on the finite element (GEOFLOW) grid correspond to the corners
of the block-centered finite-difference (SWIFT III and MODFLOW) grid.
Similarly, the element centers of the finite element grid correspond to
the centers of the finite-difference blocks. This permits a one-to-one

3-17 62
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correlation between cells and elements, and facilitates the transfer of
information between finite-difference and finite element models.

A rectangular finite difference grid system consisting of 44 rows and
51 columns was used to model the study area. At the outer 1imit of the
model area, where less detail is required, elements are 2,000 by

2,000 feet (609.6 by 609.6 meters). The grid size becomes gradually
smaller inward and reaches a minimum size of 250 by 250 feet (76.2 by
76.2 meters) in the area surrounding the SOWC extraction wells and the
meander loop on the Great Miami River.

The finite element grid system has an identical configuration to the
finite-difference grid. It consists of 2244 elements and 2340 nodes.

3.2.1.3 Assumptions
The following assumptions are made in the simulations:

* The aquifer is unconfined with no base leakage

s Extraction is performed at a constant rate at
each well, although rates vary from well to well

s The extraction wells penetrate the entire aquifer
s Darcy's law applies throughout the system, and
nonlaminar flow near the wells may be neglected
3.2.1.4 Numerical Simulations
A11 three codes, SWIFT III, GEOFLOW, and MODFLOW, solve the same ground
water flow equation. However, the numerical algorithm of each code is
different. The differences can be summarized in the following manner:

s The three codes handle boundary conditions
differently. The constant head boundary condi-
tion is treated in SWIFT III by assigning the
head to the outer face of the boundary blocks.
In the MODFLOW code, the constant heads are
assigned at the center of boundary blocks. In
GEOFLOW, constant heads are assigned at the
boundary nodes.

3-18 63
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e The SWIFT III uses a well submodel to calculate
pressures near well bores. This formulation
assumes that a skin surrounds the well bore and
that the pressure drop across this "skin" is
proportional to the flow rate. GEOFLOW and
MODFLOW do not have well submodels.

e In the SWIFT III code, the well submodel is also
used to simulate aquifer discharge into rivers
and streams (Finley and Reeves, 1982, p. 29). In
GEOFLOW, the river is simulated using its
"recharge and thickness data" subset (IT, 1986,
p. 2-8). MODFLOW has a separate river package to
simulate river effects (McDonald & Harbaugh,
1984, p. 209).

3.2.1.5 Input Specifications

Input parameters for this example were initially taken from the Zone of
Influence Study report (IT, 1988a). However, to better incorporate the
verification study objectives, some changes were made to the initial
input data. These changes did not compromise the types of aquifer
conditions forming the underlying purpose of this verification problem
(Section 3.2.1.1). The input parameters for SWIFT III, MODFLOW, and
GEOFLOW models are given in Tables 3.3, 3.4, and 3.5, respectively.

3.2.1.6 Output Specifications

The output for SWIFT III consists of the pressure distribution, river
leakage values, and Darcy velocity components. The output for GEOFLOW
includes hydraulic head, river leakages, and Darcy velocity

components. The output for MODFLOW consists of hydraulic head, river
leakages, and flow rates for the front, right, and bottom faces of each
block. In comparing the results of the three different codes, the
following factors must be accounted for:

s The pressure and Darcy velocity components for
SWIFT III are given at the center of each block.
SWIFT III provides Darcy velocity components
assuming a fully saturated cell. Thus, a
correction factor has to be applied to those
cells that are not fully saturated to allow a
direct comparison of Darcy velocity components.

3-19 66
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FOR TWO-DIMENSIONAL NUMERICAL

GROUND WATER FLOW
SWIFT III MODEL
PROBLEM GWF-5

I. Finite-Difference Grid Systema
Length: (i-direction)
Width:  (j-direction)
Number of cells:
Number of layers:

II. Hydrogeologic Parameters

Base of aquifer:

Precipitation recharge:

Zone 1 (river flood plain):
Zone 2 (bedrock elements):

Zone 3 (aquifer covered by till):

Note: River elements lack

precipitation recharge
Hydraulic conductivities:

Zone 1:

Zone 2:

Zone 3:

Note: Hydraulic conductivity is
assumed isotropic within
each zone

Porosities:

Zone 1:

Zone 2:
Zone 3:

Type of aquifer:

Flow regime:

See footnotes at end of table.

32,000 feet
- 25,000 feet
2,244
1

From 350 to 525 feet MSLP

14 inches/year
0
6 inches/year

400 fset/day
3 x 107 feet/day
400 feet/day

Unconfined

Steady state

67




INTERNATIONAL TECHNOLOGY CORPORATION

TABLE 3.3 268
(Continued)

II. Hydrogeologic Parameters (cont'd)

Boundary conditions:

Grid lower west boundary: 492 feet MsLP
Grid upper west boundary: 535 feet MSL
Grid north boundary: 540 feet MSL
Grid south boundary: 504 feet MSL
Grid east boundary: 530 feet MSL

Extraction wells production schedule:

WELL CELL i, 32 PUMPING RATE
SOWC 1 32, 24 1,644,000 feet3/day
SOWC 2 36, 30 822,000 feet/day
FMPC-P3 12, 37¢ 64,000 feet3/day
Albright and Wilson 7, 25 19,000 feet~/day
River bed leakage factor: 0.42 day'1

dRefer to Figure 3-10 for cell locations.
bMSL = above mean sea level.

CThe correct coordinates for Well P3 are i = 12, j = 37; however, for the
verification study, this well was located in the same cell as in the other
models.
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TABLE 3.4

INPUT PARAMETERS
FOR TWO-DIMENSIONAL NUMERICAL
GROUND WATER FLOW

268

‘

MODFLOW PROBLEM GWF-5

Finite-Difference Grid Systema

Length: (i-direction)
Width:  (j-direction)
Number of cells:
Number of layers:

Hydrogeologic Parameters

Base of aquifer:

Precipitation recharge:

Zone 1 (river flood plain):
Zone 2 (bedrock elements):

Zone 3 (aquifer covered by till):

Note: River elements have

precipitation recharge
Hydraulic conductivities:

Zone 1:

Zone 2:

Zone 3:

Note: Hydraulic conductivity is
assumed isotropic within
each zone

Porosities:

Zone 1:

Zone 2:
Zone 3:

Type of aquifer:

Flow regime:

See footnotes at end of table.

32,000 feet
25,000 feet
2,244
1

From 350 to 525 feet MSLP

14 inches/year
0
6 inches/year

400 fset/day
3 x 107 "feet/day
400 feet/day

Unconf ined

Steady state” -
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TABLE 3.4
(Cont inued)

II. Hydrogeologic Parameters (cont'd)
Boundary conditions:

Grid lower west boundary:
Grid upper west boundary:
Grid north boundary:

Grid south boundary:

Grid east boundary:

Extraction wells production schedule:

WELL CELL i, j8
coLL 1 32, 24
COLL 2 36, 30
FMPC-P3 12, 37¢
Albright and Wilson 7, 25

River bed leakage factor:

dRefer to Figure 3-10 for cell locations.
bMSL = above mean sea level.

INTERNATIONAL TECHNOLOGY CORPORATION

268

492 feet MsLP
535 feet MSL
540 feet MSL
504 feet MSL
530 feet MSL

PUMPING RATE

1,644,000 feet3/day
822,000 feet>/day
64,000 feet3/day
19,000 feet3/day

0.42 day~!

CThe correct coordinates for Well P3 are i = 12, j = 37; however, for the
verification study, this well was located in the same cell in the other

models.
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TABLE 3.5 268

INPUT PARAMETERS
FOR TWO-DIMENSIONAL NUMERICAL
GROUND WATER FLOW
GEOFLOW MODEL
PROBLEM GWF-5

I. Finite Element Grid System?

Length: (x-direction) 32,000 feet
Width: (y-direction) 25,000 feet
Number of elements: 2,244
Number of nodes: 2,340

II. Hydrogeologic Parameters

Base of aquifer: From 350 to 525 feet MSLb

Precipitation recharge:

Zone 1 (river flood plain): 14 inches/year
Zone 2 (bedrock elements): 0
Zone 3 (aquifer covered by till): 6 inches/year

Note: River elements have
- precipitation recharge

Hydraulic conductivities (K):

Zone 1: 400 feet/day
Zone 2: 0.003 feet/day
Zone 3: 400 feet/day

Note: Hydraulic conductivity is
assumed isotropic within

each zone
Porosities:
Zone 1: 0.25
Zone 2: 0.1
Zone 3: 0.25
Type of aquifer: Unconfined
Flow regime: . ' ' Steady state
See footnotes at end of table. ' 71



II. Hydrogeologic Parameters (cont'd)

Boundary conditions:

TABLE 3.5
(Continued)

Grid lower west boundary:
Grid upper west boundary:

Grid north boundary:
Grid south boundary:
Grid east boundary:

WELL
SOWC 1
SOWC 2

FMPC-P3
Albright and Wilson

River bed leakage factor:

CELL 4§, j®

32,
36,
13,

6,

INTERNATIONAL TECHNOLOGY CORPORATION
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492 feet MsLP
535 feet MSL
540 feet MSL
504 feet MSL
530 feet MSL

EXTRACTION RATE

1,644,000 fee§3/day

822,000 feety/day
64,000 feetg/day
19,000 feet”/day

0.42 day~.

3Refer to Figure 3-11 for grid element locations.

bMSL = above mean sea level.

CThe correct coordinates for Well P3 are i = 12, j = 37; however, for the
verification study, this well was located in the same cell in the other

models
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e The hydraulic head for MODFLOW are given at the
center of each block. However, this code does
not give the Darcy velocity components as
output. To obtain the Darcy velocity components,
additional calculations are needed based on the
flow rates provided.

e GEOFLOW gives the hydraulic head at each node and
provides the Darcy velocity components at the
center of the elements.

3.2.1.7 Results

The potentiometric levels at selected wells, as computed by SWIFT III,
GEOFLOW, and MODFLOW, are compared in Table 3.6. The wells selected as
the basis for comparison of these models are the same as those used for
the calibration of the Zone of Influence study model (IT, 1988a)

The analysis of Table 3.7 shows that SWIFT III and MODFLOW compute
ground water levels with great relative precision as evidenced by the
high degree of correlation between the two outputs (0.99981). The
average value of the relative differences between the results of the two
models is only -0.01 feet (0.003 m), indicating no bias in the
respective model results. The maximum difference of -0.5 feet (0.15m)
occurs at a relatively large cell that is close to the boundaries

(i =13, j = 40). This difference occurs because the boundary
conditions in SWIFT III and MODFLOW are handled differently, as
mentioned earlier.

The relative differences between SWIFT III and GEOFLOW potentiometric
levels are within plus or minus 2 feet (0.61 m), with the exception of
three values (Wells H-126, H-129, and SW-3A) that can be explained by
the differences in the location of wells in the grid configurations. In
GEOFLOW, wells are assigned to nodes, whereas in SWIFT III, wells are
assigned at block centers. In GEOFLOW, to obtain the ground water
elevation at the center of a finite element, nodal values of the element
were averaged. In many cases, the value obtained was not representative

' 3-20 73 |
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TABLE 3.7 2868

STATISTICS FOR THE TWO-DIMENSIONAL

GROUND WATER FLOW

NUMERICAL MODEL COMPARISONS

PROBLEM GWF-5

SUM OF DIFFERENCES® DIVIDED BY NUMBER OF
OBSERVATIONS

SUM OF ABSOLUTE DIFFERENCES DIVIDED BY
NUMBER OF OBSERVATIONS

STANDARD DEVIATION OF DIFFERENCES
DEGREE OF CORRELATION BETWEEN MODELSP

SWIFT IIT - MODFLOW

Regression Output:

SWIFT IIT - MODFLOW SWIFT IIT - GEOFLOW

-0.01 0.03
0.07 0.12
0.12 0.25
0.99981 0.99943

SWIFT IIT - GEOFLOW

Regression Qutput:

Constant 3.2355035 Constant -11.950
Std Err of Y Est 0.1202181 Std Err of Y Est 0.21385
R Squared 0.9996197 R Squared 0.99886
No. of Observations 45 No. of Observations 45
Degrees of Freedom 43 Degrees of Freedom 43

X Coefficient(s) 0.99382 X Coefficient(s) 1.0228
Std Err of Coef. 0.00295 Std Err of Coef. 0.0052
X = SWIFT III X = SWIFT III

Y = MODFLOW Y = GEOF

gThe relative and absolute differences are presented in Table 3.6.

water level

The correlation coefficient was used as the degree of correlation between computed ground

7%



INTERNATIONAL TECHNOLOGY CORPORATION

268

of the element because of an abrupt change in hydraulic gradient, or
because of the proximity of the element to a feature such as the river
or a pumping well.

The statistics in Table 3.7 show that, aithough both models have good
agreement with SWIFT III, the match between SWIFT III and MODFLOW
(degree of correlation = 0.99981) is slightly better than the match
between SWIFT III and GEOFLOW (degree of correlation = 0.99943). This
is expected because SWIFT III and GEOFLOW differ in: 1) the treatment
of boundary conditions; 2) the location of the assignment of features
(cell centers or nodes); 3) the simulation of the river; and 4) the
location of extraction wells within the corresponding cell. As will be
discussed in Section 3.2.2, greater agreement was obtained when the
center of each cell of the finite-difference model corresponded to the
nodes of the finite element model.

The horizontal Darcy velocities (specific discharges) were compared for
a cross section of the model. The Cross Section A-A' (shown in

Figures 3-10 and 3-11) was selected to compare Darcy velocities for the
three different computer simulations. The criteria used for the
selection of the cross section included intersection of a river,
intersection of an Extraction Well (SOWC-1), and the spanning of the
effective model boundaries.

The comparisons of Darcy velocity components in the x- and y-directions
are given in Figures 3-12 and 3-13, respectively. The values for the
three wells are generally in good agreement. As shown in Figure 3-12,
the specific discharges in the x-direction (Cells 9 through 35) vary
between 0.6 feet/day (0.18 m/day) close to the influence of Extraction
Well SOWC-2 and -15.5 feet/day (-4.72 m/day) at Extraction Well

SOWC-1. The maximum variation, which represents an approximate

20 percent discrepancy, can be explained by the fact that the SWIFT III
code computes specific discharges assuming a fully saturated cell. This

3-21 77
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condition is likely not well satisfied at a cell with a major pumping
well. If a correction factor is applied to the unsaturated cell at
Well SOWC-1, the difference decreases to four percent. As shown in
Figure 3-13, the specific discharges in the y-direction display very
small values except around the extraction well, where an abrupt change
of sign occurs. The agreement is good, except for the twd extremes
where the aforementioned effect of a saturated cell used to compute
specific discharges artificially reduces the values computed by

SWIFT III.

Leakage rates per unit area at selected points along the Great Miami
River, as computed from the results of the SWIFT III, MODFLOW, and
GEOFLOW models, are compared in Figure 3-14. The area represented is an
approximate 5,000-foot reach of river, starting about 2,000 feet
upstream from Extraction Well SOWC-1. This figure shows that the river
recharges the aquifer throughout this reach. Recharge rates within the
selected reach as computed by all three models, range between -2.0 and
-0.2 cubic feet per day per square foot. The negative sign indicates
that recharge from the river to the aquifer is occurring. The maximum
values of recharge rates coincide with the overlapping influence of
Extraction Wells SOWC-1 and SOWC-2. The differences in the predicted
values from the three models are within seven percent. Considering the
fact that each model used a different method of simulating the river,
this agreement in model predictions is very good.

In summary, the results of verification Problem GWF-5 indicate that
there is a good agreement among the results obtained by sitewide
modeling with the SWIFT III, MODFLOW, and GEOFLOW codes. This agreement
was obtained even through the models differ in grid configuration and
solution algorithms. |
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3.2.2 Problems GWF-6a, 6b, 6C, and 6d: Three-Dimensional Comparisons

To verify the site specific, three-dimensional simulation capabilities
of the SWIFT III code, a series of problems were simulated using the
SWIFT III and MODFLOW programs. The PTC program was also used in some
of these problems, as appropriate.

To systematically test the SWIFT III code capabilities, a baseline
verification problem was first established. Variations were then made

to the baseline problem to test new combinations of features.

3.2.2.1 Purpose of Problem Selection

The series of three-dimensional ground water flow problems was selected

to test the modeling of various combinations of capabilities of the
SWIFT III code. Aquifer complexity was increased with each successive
problem. The features of Problem GWF-6a (the baseline problem) are as
follows:

Confined aquifer

Anisotropic aquifer

Steady-state pressure solution
Three-dimensional Cartesian coordinates
Constant-head boundary condition
No-flow boundary condition
Extraction well

Injection well

Partially penetrating wells
Darcy velocity components
Constant well pumping rate
Aquifer influence function

In the second problem of the GWF-6 sequence (Problem GWF-6b), the
aquifer was changed to an unconfined condition and a natural recharge
was added as a hydrologic input. To verify the computational accuracy
of the SWIFT III code when simulating a river system potentially
affected by nearby pumping wells, a river was added and the injection
well deleted in Problem GWF-6c. The final problem in the series,

Problem GWF-6d, introduced a larger extraction well system to simulate a

more significant hydrologic stress on steady-state aquifer conditions.

3-23
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3.2.2.2 Problem Description
The input data of the example problem in Finley and Reeves (1982, p. 94,
Problem 6.2) was modified to establish Problem GWF-6a. The isometric
grid system used for the three-dimensional ground water flow

verification is shown in Figure 3-15. Because of model symmetry, only
one-half of the grid system was used. The symmetry plane is the front
face parallel to the x-z plane in Figure 3-15. The horizontal grid
system used in the finite-difference models (SWIFT III and MODFLOW) is
shown in Figure 3-16. Because PTC is node-centered, a revised grid was
developed for the purpose of obtaining nodal results at the center of
the finite-difference model blocks. The finite element grid system for
PTC is shown in Figure 3-17. The vertical grid has three layers and was
the same for the three models. The uppermost face on the x-z plane (the
first Tayer) was simulated as a constant-head boundary. A1l of the
other faces were simulated as no-flow boundaries.

3.2.2.3 Assumptions
The assumptions are the following:

e The aquifer is ideally confined or unconfined,
according to the problem being studied

 Extraction and injection rates are constant at
each well

* The extraction and injection wells are assumed to
be screened in the second layer, and thus receive
or contribute water from or to the entire
thickness of the aquifer by horizontal flow

e Darcy's law applies throughout the system

3.2.2.4 Numerical Simulations

As mentioned before, a revised horizontal grid (Figure 3-17) was used
for PTC to produce results that can be correlated to the center of the
finite-difference model blocks. As outlined in Section 3.2.1.4, the
constant-head boundary condition is treated by SWIFT III by assigning
the value of the hydraulic head to the outer face of the boundary

83
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blocks. However, the MODFLOW model assigns constant-head values to the
center of the boundary blocks. This situation became a complicating
issue for the river leakage comparisons, but was overcome by simulating
the constant-head cells with wells (Finley and Reeves, 1982, p. 31).
The other aspects of the SWIFT III and MODFLOW models are as specified
in Section 3.2.1.4.

3.2.2.5 Input Specifications

The input parameters for SWIFT III/MODFLOW and PTC are given in

Tables 3.8 and 3.9, respectively. The hydrogeologic parameters given in
these tables are representative of values at the FMPC site, with the
exception that actual well rates are twice the values given in

Tables 3.8 and 3.9.

3.2.2.6 Qutput Specifications
For the GWF-6 sequence of problems, the output from SWIFT III consisted

of pressure, river leakage values, and Darcy velocity components. The
output from MODFLOW consisted of hydraulic head, river leakages, and
flow rates for the front, right, and bottom faces of each block. The
output of PTC was limited to hydraulic head and Darcy velocity
components because the river was not included in the PTC simulations.

3.2.2.7 Results - Problem GWF-6a

The steady-state potentiometric levels computed by SWIFT III, MODFLOW,
and PTC for a confined aquifer with an injection well and an extraction
well are presented in Figure 3-18. Table 3.10 lists the differences in
potentiometric levels between SWIFT III and MODFLOW and between

SWIFT III and PTC, respectively. Table 3.10 and Figure 3-18 indicate
that the maximum difference in results among the models occurs at the
cells containing wells. This is expected because of differences in the
algorithms used to simulate wells in the respective codes. SWIFT III
results match the MODFLOW results more closely than the match to PTC
results because of the similar numerical technique used in the SWIFT III
and MODFLOW code. '

3-25 87
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TABLE 3.8 268
INPUT PARAMETERS FOR THE
THREE-DIMENSIONAL SWIFT III AND MODFLOW
GROUND WATER FLOW MODELS
PROBLEMS GWF-6a, 6b, 6c, and 6d

I. Finite-Difference Grid Systema

Length: (i-direction)
Width:  (j-direction)
Number of cells:

Number of layers:
Elevation of datum plane:

Hydrogeologic Parameters

Thickness of first layer:
Thickness of second layer:
Thickness of third layer:

Precipitation recharge:b

Hydraulic conductivities:
Horizontal:

Transversal:
Vertical:

Porosity:

Types of aquifers simulated:

Flow regime:

Boundary conditions
(cells i =1 through 14,
j=1, and k = 1):

Confined case:
Unconfined case:

See footnotes at end of table.

109.728 m (360 ft)
47.244 m (155 ft)
70
3
Om (0 ft)

15.240 m (50 ft)
30.480 m (100 ft)
15.240 m (50 ft)

6.443 x 107/ cm/s (8 inches/year)

'} cm/s (400 ft/day)
'2 cm/s (400 ft/day)
cm/s (133.33 ft/day)

1.41 x 10
1.41 x 10
4.70 x 10~
0.25
Conf ined/Unconfined/
Unconfined with recharge and river

Steady state

30.48 m (100 ft)
Om (0 ft)
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TABLE 3.8 2868
(Continued)

II. Hydrogeologic Parameters (cont'd)

Injection and extraction wells production schedule:

Problem Well Type Well Location Rates
i ] 3 3

Confined Injection 4 5 15,000 m3/day (529,720 ft3/day)

Extraction 11 5 15,000 m>/day (529,720 ft°/day)
Unconfined with  Injection 4 5 35,396 mg/day (1,250,000 ftg/day)
recharge Extraction 11 5 35,396 m°/day (1,250,000 ft~/day)
Unconfined with Extraction 11 5 35,396 m3/day (1,250,000 ft3/day)
river and
recharge
Unconfined with  Extraction 4 5 35,396 mglday (1,250,000 ftg/day)
river and Extraction 11 5 35,396 m>/day (1,250,000 ft~/day)
‘recharge '

4Refer to Figure 3-15 for isometric model and Figure 3-16 for horizontal grid
system.

bPrecipitation recharge is applicable to Problems GWF-6b, GWF-6c, and GWF-6d.

CMODFLOW boundary values were assigned to the center of the cells and SWIFT III's
to the center of the outer face.
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TABLE 3.9 268

INPUT PARAMETERS FOR THE
THREE-DIMENSIONAL PRINCETON TRANSPORT CODE (PTC) MODEL
PROBLEMS GWF-6a, AND 6b

I. Finite Element Grid Systema

Length: (x-direction)
Width: (y-direction)

47.244 m (155 ft)
109.728 m (360 ft)

II.

Number of elements: 280
Number of nodes: 319
Number of layers: 3
Elevation of datum plane: Om (0 ft)

Hydrogeologic Parameters

Thickness of first layer:

Thickness of second layer:

Thickness of third layer:
Precipitation recharge:

Hydraulic conductivities:

15.240 m (50 ft)
30.480 m (100 ft)
15.240 m (50 ft)

- 6.443 x 1077 cm/s (8 inches/year)

Horizontal: 1.41 x 10'; cm/s (400 ft/day)
Vertical: 4.70 x 107° cm/s (133.33 ft/day)
Porosity: 0.25

Types of aquifers simulated:

Flow regime:

Boundary conditions:
Layer:

Node numbers:
(Constant Head)

Confined case value:
Unconfined caseAva1ue:

See footnote at end of table.

Confined/Unconfined with recharge

Steady state

3 (Top)b

1, 12, 23, 34, 45
56, 67, 78, 89, 100,
111, 122, 133, 144, 155,
166, 177, 188, 199, 210,
221, 232, 243, 254, 265,
276, 287, 298, and 309

30.48 100 ft
0 mm(é ft) ) !;ﬁ)
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2
TABLE 3.9 “'68
(Continued)

II. Hydrogeologic Parameters (cont'd)

Injection and extraction wells production schedule:

Case Well Type Well Location Rates
1* J_*
Conf ined Injection 4 5 15,000 mg/day (529,720 ftg/day)
Extraction 11 5 15,000 m>/day (529,720 ft-/day)
Unconfined Injection 4 4 35,396 mg/day (1,250,000 ft3/day)
Extraction 11 5 35,396 m>/day (1,250,000 ft3/day)

4Refer to Figure 3-17 for Finite Element Grid.
bPTC model reverses the order of the layers; thus,

SWIFT III Layer No. Corresponding PTC Layer No.
1 3
2 2
3 1

*The location of the injection and extraction well defined as above applies to the
SWIFT III grid.
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To further investigate the accuracy of computations among the three
codes, a comparison of Darcy velocities or specific discharges was
performed for the confined aquifer case. The codes provided Darcy
velocities in different ways. SWIFT III assumed a fully saturated cell
in the computations of specific discharges, MODFLOW produced flow rates
across three faces of each cell, and PTC produced Darcy velocities only
in the z-direction and disregarded the sign in the middle layers.
Moreover, PTC gives the horizontal velocities at the center of the
elements, which made it necessary to average the velocities of four
elements to obtain the required Darcy velocity at the center node of a
block. These differences in output structure made it necessary to
perform certain computations to obtain equivalent Darcy velocities.

In addition to the computational procedures, each code calculated Darcy
velocities at different locations on a given block. For example, in
calculating the x-component of Darcy velocity, SWIFT III provided the
result at the rear face of the block, MODFLOW provided the result at the
front face of the block, and the PTC four-element average was calculated
at the center of the block.

Figures 3-19, 3-20, and 3-21 present comparisons for the steady-state
Darcy velocity components in the x-, y-, and z-directions, respectively,
for SWIFT III, MODFLOW, and PTC models for Problem GWF-6a. The cells
selected for comparison were those with coordinates j=5 and i=1 through
i = 14 for the second layer (refer to Figures 3-15 and 3-16). These
cells were selected because of their proximity to the wells, where the
largest velocities, and thus model discrepancies, are likely to be
found. Figure 3-19 confirms the expected symmetry of Darcy velocities
(specific discharges) in the x-direction about the center of the grid.
The symmetry is particularly apparent from the PTC data which were
calculated and plotted at the center of blocks. Darcy velocity
components for SWIFT III and MODFLOW were calculated and plotted at the
back and front faces, respectively, of grid blocks, the faces of the

3-26
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blocks being defined by the positive direction of the Darcy velocity
component.

The maximum discrepancy in specific discharge (7.5 m3/day/m2,

23 ft3/day/ft2) occurred at the location of the wells. Figures 3-20 and
3-21 exhibit similar characteristics, except for the expected asymmetry
about the center of the grid in the x-direction. The comparison between
SWIFT III and MODFLOW is excellent in the three vertical directions,
except in the cells at the wells. PTC results were closer to SWIFT III
results at the well cells in the y-direction because of the
aforementioned averaging of velocities in PTC. These differences are
expected at the well locations because of the grid size and methods of
computation. However, because excellent agreements were obtained in
areas away from the well locations, the SWIFT III code is performing
ground water flow simulations satisfactorily.

Problem GWF-6b

In Problem GWF-6, the aquifer is unconfined and natural recharge is
added to the system. The steady-state potentiometric levels computed by
the SWIFT III, MODFLOW, and PTC models are shown in Table 3.11 and
Figure 3-22. As both the table and figure indicate, the computed
potentiometric levels compare favorably except at the well locations.
These differences are basically attributed to differences in code
algorithms, and to the necessary extrapolation of output results. The
significance of these differences is exactly as discussed in

Problem GWF-6a previously.

Problem GWF-6c¢

Simulations with a river and an extraction well were performed in
Problem GWF-6c. The river was located in the top layer (k=1) along the
x-axis (i=1 through i=14) and between the boundary and the wells

(j=2). A sketch of the model system, including the river, is presented
as an insert in Figures 3-23 through 3-25. Because SWIFT III lacks a
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submodel to simulate a river, the well submodel was used to simulate the
aquifer recharge/discharge to or from a river system. The feature of
the well submodel that assigns either a variable recharge/discharge rate
or a pressure limitation was exercised to simulate seepage to or from
the river. To account for an upper bound on river leakages, the flow
rate limitation option was specified for each one of the wells used for
river simulation. Such limiting flows were computed using the
difference between the river stage and river bottom as the hydraulic
head, the planar area of the river as the seepage face, and the river
bed conductance as the river bed vertical hydraulic conductivity. These
input variables were common to SWIFT III and MODFLOW.

The MODFLOW model simulates seepage to or from a river by adding one of
two sets of terms to the ground water flow equations. One set,
involving a river bed which is in contact with the aquifer, assumes that
leakage varies as a function of the difference in heads between the
river and the aquifer. The other set, accounting for unsaturated
material below the river bed, assumes that leakage is only a function of
the head in the river. The choice of which set to use is made internal
to the model at the beginning of each iteration by comparing the most
recent value of the head in the cell with the elevation of the riverbed
bottom.

The input data for Problem GWF-6C are given in Table 3.8. Steady-state
simulations were made with the SWIFT III and MODFLOW models. The
steady-state specific discharge (Darcy velocity) components in the x-,
y-, and z-directions are shown in Figures 3-23, 3-24, and 3-25, respec-
tively. The specific discharge computed from these two models compare
favorably except near the extraction well, where SWIFT III appears to
slightly underestimate the y-component of Darcy velocities (Figure 3-24).
These differences are not significant to the model application for the
FMPC site as discussed previously.

3-28
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Problem GWF-6d
To enhance verification of the ground water flow models, it was neces-

sary to evaluate the accuracy of the SWIFT III code's leakage rate
computations under a significant drawdown condition. The reliable
computation of leakage rates is critical because of the prominent river-
aquifer interface at the FMPC site. To compare leakage rates, the
SWIFT III and MODFLOW models were used to study the effect of large
pumping wells in an area close to the river. Extraction wells pumping
at a combined rate of 70,850 cubic meters per day (13,000 gpm) were
assigned to two cells (Cell i=4, j=5, k=2 and Cell i=11, j=5, and

k=2). Leakage rates through the river bed were calculated in Layer 1.
The grid system and model layers are shown in Figures 3-15 and 3-16.

The river leakage rates per cell computed from the results of the

SWIFT IIT and MODFLOW models are presented in Figure 3-26. The leakage
rates are plotted in gallons per minute (gpm). The plot follows the
symmetry of the model, with the largest rates appearing at the
boundaries where the cells are large. Figure 3-26 shows that the

SWIFT III code yielded somewhat larger leakage rates than MODFLOW. This
observation is confirmed in Table 3.12 and Figure 3-27 in which leakage
rates per unit area are presented. This deviation can be attributed to
the subtle differences in the boundary conditions of the models.

SWIFT III draws more water from the river because the boundary
conditions are face-centered instead of block-centered. To overcome
this situation, special boundary conditions had to be used in SWIFT III
in an attempt to match the results of the MODFLOW model. Because the
MbDFLOH code has a river package, the results obtained from this package
were regarded as being more reliable. This greater reliability is
demonstrated in Figure 3-27 which shows, consistent to expectations,
that river leakage as calculated by MODFLOW is constant whenever the
potentiometric level of the aquifer is below the river bottom (compare
Figure 3-28). If differences in leakage rates arising from boundary
effects are neglected, the computed leakage rates by the two codes will
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TABLE 3.12 268

COMPARISON OF RIVER LEAKAGE RATES FOR SWIFT III AND
MODFLOW GROUND WATER FLOW MODELS
FOR THE FIRST LAYER BENEATH THE RIVER?
PROBLEM GWF-6d

| CELL FLOW CELL FLOW

COORDINATES®  CELL AREA  SWIFT III  MQDFLOW  SWIFT II ODFLOW

I J K (m°) m>/day m°/day m°/day/m m /day/m3
1 2 1 297.29 -154.66°  -146.2  -0.520 -0.49
2 2 1 148.64 -101.95 -95.14  -0.69 -0.64
3 2 1 74.32 -57.80 -47.58 -0.78 -0.64
4 2 1 37.16 -30.15 -23.79 -0.811 -0.64
5 2 1 37.16 -30.76 ~23.79 -0.828 -0.64
6 2 1 37.16 -31.19 -23.79  -0.839 -0.64
7 2 1 37.16 -31.36 -23.79 -0.844 -0.64
8 2 1 37.16 -31.36 -23.79 -0.844 -0.64
9 2 1 37.16 -31.19 -23.79 -0.839 -0.64
10 2 1 37.16 -30.76 -23.79  -0.828 -0.64
11 2 1 37.16 -30.15 -23.74 -0.811 -0.64
12 2 1 74.32 -57.80 -47.58 -0.78 -0.64
13 2 1 148.64 -101.95 -95.14  -0.69 -0.64
14 2 1 297.29 -154.66 -146.2  -0.52 -0.49

3The leakage rates have been plotted in Figures 3-27 and 3-28.
Crefer to Figures 3-15 and 3-16 for cell Tocations.
CThe negative values are a result of the location of the datum (Figure 3-15).
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be the same except where potentiometric level declines below the bottom
of the river bed. In this case, as shown in Figure 3-27, the leakage
rate calculated by SWIFT III is about 17 percent more than that
calculated by MODFLOW.

It may be noted that the leakage rates calculated in Problem GWF-5
(Figure 3-14) are smaller than the rates for Problem GWF-6d. This is
consistent with differences in pumping rates, because Problem GWF-6d has
much larger pumping rates than the rates of pumping at wells near the
FMPC.

The comparison of potentiometric levels below the river is plotted in
Figure 3-28 and presented in Table 3.13. The SWIFT III model exhibits
greater drawdown than the MODFLOW model. This is consistent with the
larger leakage rates calculated by the SWIFT III model. It is relevant,
however, to note that the differences in the potentiometric levels were
of the order of one-percent. These differences fall well within the
level of expected performance of the codes.

3.3 FIELD COMPARISONS

Field verification of a code is achieved by the development of a site-
specific calibrated model which satisfies established calibration
criteria. The calibration of the two- and three-dimensional flow models
for the FMPC using the SWIFT III program has been successfully completed
as part of the RI/FS modeling study. The results will be presented in a
separate RI/FS modeling report.

3-30
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TABLE 3.13 268

COMPARISON OF POTENTIOMETRIC LEVELS FOR SWIFT III AND
MODFLOW GROUND WATER FLOW MODELS
FOR THE FIRST LAYER BENEATH THE RIVER?
PROBLEM GWF-6d

b SWIFT III MODF LOW SWIFT III

COORDINATES®  POTENTIOMETRIC POTENTIOMETRIC MINUS DIFFERENCE
I J K LEVEL LEVEL MODF LOW (%)

(meters) (meters) (meters)

1 2 1 -2.76 -2.69°¢ -0.06 -0.55
2 2 1 -3.16 -3.05 -0.11 -0.88
3 2 1 -3.37 -3.24 -0.13 -1.02
4 2 1 -3.45 -3.31 -0.14 -1.07
5 2 1 -3.49 -3.34 -0.15 -1.09
6 2 1 -3.52 -3.37 -0.15 -1.11
7 2 1 -3.53 -3.38 -0.15 -1.11
g8 2 1 -3.53 -3.38 -0.15 -1.11
9 2 1 -3.52 -3.37 -0.15 -1.11
10 2 1 -3.49 -3.34 -0.15 -1.09
11 2 1 -3.45 -3.31 -0.14 -1.07
12 2 1 -3.37 -3.24 -0.13 -1.02
13 2 1 -3.16 -3.05 -0.11 -0.88
14 2 1 -2.76 -2.69 - -0.07 -0.60

8The potentiometric levels have been plotted in Figure 3-28.
brefer to Figures 3-15 and 3-16 for cell locations.
“The negative values. are a result of the Tocation of the datum (Figure 3-15).
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4.0 RADIONUCLIDE AND SOLUTE TRANSPORT VERIFICATION

In this chapter, technical details for each of the solute transport
verification problems are discussed. The details presented here are
also intended to be a documentation and reference of the computer codes
and files associated with the verification study. Verification results
are presented in English units and/or Standard International (SI)
units. The flexibility was provided to maintain consistency of units
used by the originators of the comparison verification problems. Unit
conversions are given in pertinent tables.

Table 4.1 has been prepared to summarize the application of each problem
to the solute transport simulation capabilities of the SWIFT III code
being verified. This table includes problem name, model features to be
tested, and references to appropriate figures and tables. References to
associated files for each solute transport verification problem are
presented in Table B.2 of Appendix B.

The following three problems were selected for use in verifying the
radionuclide and solute transport components of the SWIFT III code:
e (One-dimensional analytical solute transport with

chain decay and equal retardation parameters
(Problem ST-1)

e Two-dimensional numerical and analytical solute
transport (Problem ST-2)

e Three-dimensional numerical solute transport
(Problem ST-3)

The above problems were selected to verify the performance of the
SWIFT III code and are consistent with the verification process outlined
in Table 2.2.

4-1
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4.1 VERIFICATION PROBLEMS - ANALYTICAL SOLUTIONS

One- and two-dimensional analytical solutions of solute transport in
uniform ground water flow fields were used in the SWIFT III code
verification process. The first problem (Problem ST-1) is one-
dimensional and was reproduced from "Verification and Field Comparison
of the Sandia Waste-Isolation Flow and Transport Model (SWIFT)" by Ward,
et al. (1984). The second one (Problem ST-2) is a two-dimensional
problem, the solution for which was developed by IT (1986).

4.1.1 Problem ST-1: One-Dimensional Transport with Chain Decay and
Equal Retardation Parameters

4.1.1.1 Purpose of Problem Selection

Problem ST-1 was selected to test the combination of the following
capabilities of the SWIFT III code:

* One-dimensional solute transport

s Radionuclide decay and generation of daughter
products

e Waste-leach radionuclide source

e (Cartesian coordinates

4,1.1.2 Problem Description

The problem has been selected from Ward, et al. (1984, pp. 4-1 to 4-2),
and is partly reproduced here for the purpose of completeness of
presentation. The problem was previously used by GeoTrans to verify the
SWIFT III code. By selecting this problem and duplicating the GeoTrans
results, it could be ascertained that the SWIFT III code is functioning
on the IT computer system. A schematic of the problem is included as an

insert in Figure 4-1. It represents a one-dimensional, constant
velocity flow in a porous medium. An impervious boundary exists on both
sides of the porous system, and a radionuclide source is located at the
upgradient end.

4-2 ‘ 114
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A three-component radionuclide chain is released into the porous medium,
where it is subject to convection, dispersion, and sorption. The
sorption is assumed to be represented by a single retardation factor
which is constant in space and time and is the same for all three
components. Assuming a one-dimensional transport system, the equation
to be solved is (Ward, et al., 1984):

2
~ aCr 3 Cr BCr

- U X + ;—2— + kr,r-l"r-lcr-l - \)rcr = W s T = 1,2,3 (401)

where
= retarded interstitial velocity of radionuclide [L/t],

U=
C,. = radionuclide concentration [M/L3] for each daughter
component,

k = product of a branching ratio and a daughter-to-parent
mass fraction (dimensionless),

v = decay constant [1/t],
r = a subscript representing each daughter component;.

The velocity appearing in Equation 4.1 is the retarded interstitial
velocity, which is defined in terms of the Darcy velocity, v:

g Y
U= ¢Rd (4.2a)

where Rd is the retardation factor. The dispersion coefficient is
defined in terms of this velocity, i.e.,

D=aU (4.2b)
where
D = dispersion coefficient [Lz/t],
ap = longitudinal dispersivity L]

4-3
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The initial concentration of the radionuclides in the porous medium is
zero for each component: '

Cr(x,t=0) = 0, X

v
o

(4.3a)

Furthermore, the infinite boundary is held at the initial condition for
each component:

Cr(x = w,t) =0, t

v
o

(4.3b)

~

However, a time-dependent flux, UCr, enters the system through a third-
type boundary condition:

~ aC

uc r

Y‘-DW=UCY" x=0,t>0 (4.3c)

The time-dependent boundary value, Cr(t)’ arises from a radionuclide
inventory undergoing Bateman decay/production relative to the initial
boundary values, i.e.

C.(t=0) = C., (4.4)

4.1.1.3 Assumptions
The following assumptions are made:

* Ground water flow and solute transport are one
dimensional

e The domain is semi-infinite

* Hydrogeologic parameters are constant throughout
the domain

e The inventory of radionuclides are infinite, and
thus the period of leaching are infinite

4-4
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¢ Radionuclides are present in trace quantities
only, and as such they do not influence flow

e Diffusion is insignificant within the fluid field

e Adsorption may be approximated by a linear
equilibrium isotherm

e Dispersivity and retardation factor are constant
throughout the domain

¢ The radionuclide components have equal
retardation factors

4.1.1.4 Analytical Solution

The analytical solution for this problem is derived in Coats and Smith
(1964). The same solution is also reported in Ward et al. (1984,

pp. 4-4 and 4-5).

Because of the assumption of equal retardations, the solution of
Equation 4.1 may be written in the factored form:

¢ (xt) = € (1)e(P(x,t) (4.5)

~

where Cr contains only decay/production terms, and 0(3)2 a dimensionless
function, contains only transport terms. The function Cr is given by:

~

C.(t) = Cge T, el (4.6a)
~ ( -t §-1[~ r-1 )
C(t)y= C.e r + { C Y .(t)S,
r ro k=1 k°§=k rj Jj
r-1
.g,-r_-Ik Sg/(vy,' \:j)]}, r>1 (4.6b)
2%
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where
. = k. V. 4.7
S5 % Ki1,5% (4.7a)
r-1 (4.7b)
n S /(v ) =1 k = r-1
2=k
2]
and
_ —vjt -vrt
Yrj = (e -e )/(vr - vj) (4.7¢)

The solution to Equation 4.1 is in the form of a dimensionless function
which contains the transport terms given in Coats and Smith (1964).

~ ~

o(3) =-% {erfc[;z——;T7§] - exp(D Yerfc| ? L ?}2 }
G o ax X + Ut
- §ﬁ(x + Ut)exp(ﬁ—)erfc[ (Dt)l/zl
- 1/2 ~ 12
+ (%53) exp| - 15—55%51—] (4.8)

The Equations 4.5, 4.6, and 4.8 are used to calculate radionuclide

concentrations for various daughter components as functions of time and
distance. '

4.1.1.5 Numerical Solution
Important aspects of the numerical solution are discussed in Ward et al.
(1984, pp 4-5 to 4-9) and are restated below.

A finite-difference grid containing 32 one-dimensional blocks was
constructed to simulate solute transport. The numerical model was 77.5m

4-6
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(254 ft) in length. This length was sufficient to minimize the effect
of placing the source at the first cell, rather than at the exact
boundary, which is the case for the analytical solution (Equation 4.3c).

Centered-in-space differencing was selected, and the spatial increments
were chosen to be consistent with the appropriate criterion (ax < 2a|)
for numerical stability. Centered differencing was also chosen for the
time domain. The analyses wére performed for a period up to

1,120 years.

After the breakthrough occurs at about 640 years, the concentration
gradient within the system for Component 1 dissipates and the
concentration becomes virtually uniform over the length of the system.
In the absence of sharp concentration gradients, numerical dispersion
does not appear in the solution because the convection term causing the
numerical dispersion disappears. Thus, after 640 years it was necessary
only to observe constraints arising from the haif-1ife of Component 1
(433 years). As this component became insignificant it was necessary
only to track Component 3, which had a considerably longer half-life
(6,540 years).

4.1.1.6 Input Specifications

Input parameters for this problem are given in Table 4.2.

4.1.1.7 OQutput Specifications

The output consists of curves of concentration versus distance for each
of the three radionuclide components.

4.1.1.8 Results

A comparison of normalized concentrations as a function of distance for
Component 1 of the three-component radionuclide chain decay is shown in
Figure 4-1. Review of Figure 4-1 indicates that the normalized
concentration of Component 1 resulting from the numerical model agrees

4-7
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TABLE 4.2 268
INPUT PARAMETERS FOR THE THREE-COMPONENT RADIONUCLIDE
CHAIN DECAY
PROBLEM ST-1
SYSTEM PARAMETERS VALUE

PARAMETER SYMBOL @ . ENGLISH
System length L 77.5 m ) 254 ft
Sbatia] increments AX 1.68 to 2.5 m 5.5 to 8.2 ft
Boundary pressure Po 3.33 x 10° pa 48.3 psi
Boundary pressure 0 6.98 x 104 Pa 10 psi
Hydraulic conductivity Ky 6.7 x 1076 m/s 1.9 ft/day
Spatial differencing cisP - -
Time differencing cITC - -
Darcy velocity u 2.31 x 1078 m/s 0.656 ft/day
Porosity ) 0.1 0.1
Longitudinal dispersivity ap 2.59 m 8.5 ft
Retardation factor R4 9,352 9,352
Retarded interstitial velocity ud 2.47 x 1079 m/s 7.0l x 104 ft/day
Dispersion coefficient D 6.39 x 1072 m¥/s  5.96 x 1073 ft2/day

COMPONENT PARAMETERS

COMPONENT ~ PARAMETER® HALF-LIFE  DECAY CONSTANT. v
¢ ’ INITIAL CONCENTRATION, C
NUMBER Ke,r_1 (¥) ( ?) ro
1 0 433 1.60 x 10‘3 1
2 1 15 4.62 x 1072 0
3 1 6,540 1.06 x 10 0

4Symbols follow the convention adopted in SWIFT's verification manual
(Ward, et al., 1984).

beis = centered in space.
CCIT - centered in time.
dRetarded interstitial velocity is defined as u/¢Rd.

~®Product- of branching ratio and mass fraction of daughter-toparent. - ~ - -t oo
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well with the analytical solution up to 40 meters from the source.
Thereafter the computed values diverge to some degree from the
analytical values. Table 4.3 presents the comparison of analytical and
SWIFT III results for Component 2 for t = 270 and 1,120 years. The
comparison between analytical and numerical results of Component 2 in
Table 4.3 indicate that at relatively low concentrations, the analytical
and numerical model results do not agree well. This is of no
consequence to future applications of the SWIFT III codes because it
results from numerical inaccuracies introduced in either model via
computations with very small numbers. A case in point is illustrated in
Table 4.3, where at 273 years, the difference between numerical and
analytical concentrations is one order of magnitude (10'5 to 10'6) at
56.25 meters from the source. However, after 1,120 years, the agreement
between numerical and analytical values is excellent throughout the
length of the model. -

4.1.2 Problems ST-2a and 2b: Two-Dimensional Solute Transport
Two-dimensional solute transport comparisons were made between SWIFT III

and both analytical solutions and a second numerical code. For
analytical solutions, the program STRIP1B-FBC-G developed by IT (1986)
was chosen. For numerical solutions, the GEOFLOW code was used.
Problems ST-2a and ST-2b are identical except for the retardation
factor, which for Problem ST-2a is equal to 1 and for Problem ST-2b is
equal to 2.5.

4.1.2.1 Purpose of Probliem Selection
Problems ST-2a and ST-2b were selected to test the modeling behavior of
the following aspects of the SWIFT III code:

* Two-dimensional solute transport
e C(Cartesian coordinates
e The effects of the retardation factor

4-8
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135.3
143.5
151.7
159.9
166.7
172.2
177.7
184.5
192.7
200.9
209.1
217.4
225.5
233.7
241.9
250.1

TABLE 4.3
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COMPARISON OF SWIFT III AND ANALYTICAL RESULTS FOR
RADIONUCLIDE DECAY AND TRANSPORT FOR COMPONENT 2%

DISTANCE
FROM
SOURCE
(meters)

1.25

3.75

6.25

8.75
11.25
13.75
16.25
18.75
21.25
23.75
26.25
28.75
31.25
33.75
36.25
38.75
41.25
43.75
46.25
48.75
50.83
52.50
54.17
56.25
58.75
61.25
63.75
66.25
68.75
71.25
73.75
76.25

= 273 years
SWIFT III  ANALYTICAL
2.366-020  2.286-02
2.34E-02  2.24E-02
2.326-02  2.176-02
2.27€-02  2.08E-02
2.196-02  1.95E-02
2.076-02  1.75E-02
1.92E-02  1.59E-02
1.73E-02  1.37E-02
1.50E-02  1.14E-02
1.27E-02  9.18E-03
1.03E-02  7.08E-03
8.086-03  5.23E-03
6.09€-03  3.70E-03
4.41€-03  2.50E-03
3.086-03  1.61E-03
2.076-03  9.91E-04
1.346-03  5.79E-04
8.36E-04  3.22E-04
5.04E-04  1.70E-04
2.94E-04  8.54E-05
1.86E-04  4.62E-05
1.25E-04  2.76E-05
8.276-05  1.61E-05
4.77E-05  7.91E-06
2.47E-05  3.22E-06
1.25E-05  1.24E-06
6.136-05  64.54-E07
2.94E-06  1.57E-07
1.396-06  5.16E-08
6.40E-06  1.60E-08
2.916-06  4.71E-09
1.426-07  1.32E-09

PROBLEM ST-1

= 1120 years
SWIFT III  ANALYTICAL
6.11E-03 5.97E-03
6.11E-03 5.97E-03
6.11E-03 5.97E-03
6.11E-03 5.97E-03
6.10E-03 5.97E-03
6.10E-03 5.97E-03
6.10E-03 5.97E-03
6.10€E-03 5.97E-03
6.10E-03 5.97E-03
6.10E-03 5.97E-03
6.10E-03 5.96E-03
6.10E-03 5.96E-03
6.09E-03 5.95E-03
6.09E-03 5.94E-03
6.08E-03 5.93E-03
6.08E-03 5.91E-03
6.07E-03 5.89E-03
6.05E-03 5.86E-03
6.03€-03 5.83E-03
6.00E-03 5.78E-03
5.97E-03 5.73E-03
5.94E-03 5.69E-03
5.91E-03 5.64E-03
5.86E-03 5.56E-03
5.78E-03 5.46E-03
5.69E-03 5.34E-03
5.58E-03 5.19€E-03
5.45E-03 5.03E-03
5.30E-03 4.85E-03
5.13E-03 4.65E-03
4.96€E-03 4.42€-03
4.83E-03 4.18E-03

Refer to Figure 4-1 for plot of Component 1 Concentrations.

Refer to Table 4.2 for characteristics of Component 2.

BA11 values are given as the ratio of concentration at the given
time to the initial concentration of the parent radionucliide:
Component 1.

_ Refer to Figure 4-1 for insert of schematic geometry of problem.
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e Finite length of solute source
e Asymmetrical solute source location

4,1.2.2 Problem Description

A schematic drawing of the general solute source problem is given in
Figure 4-2. The problem considers transient two-dimensional solute
transport in a unidirectional ground water flow field between two
impervious boundaries with the third-type (Cauchy) flux boundary
condition at the source. The solute source is located irregularly along
the z-axis and flow is in the x-direction. The source concentrations
are functions of distance along the z-axis. The porous medium extends
to infinity in the x-direction and has a finite length, Hys along the
z-axis, as depicted in Figure 4-2. In this figure, Cmi represents the
source concentration at the ith strip.

With Tinear equilibrium adsorption and first-order decay, the two-
dimensional hydrodynamic dispersion equation in a unidirectional flow
field can be written as:

2 2
+D

o

o _p 2 a%C
Rd 3t Dx » 7 322 - U X " Rde (4.9)

N

where

C = mass of solute for unit volume of fluid [M/L3],
Ry = retardation factor [dimensionless],

v = decay constant [1/t],

U = seepage velocity [L/t],

z = Cartesian coordinates [L],

D,,D, = longitudinal ang transverse dispersion coefficients,
respectively [L</t]

The seepage velocity, U, appearing in Equation 4.9 is the ground water

velocity which is defined in terms of the Darcy velocity, v, and
porosity, ¢, as:

-9 124
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(4.10)

[y
n
o<

Dy and D, are the longitudinal and transverse dispersion coefficients
and are defined as:

D, = a U (4.11)
D, = aqU (4.12)

where o) [L] and ay [L] are the longitudinal and transverse disper-
sivities, respectively.

Initially, the concentration in the porous medium is zero. Therefore,
the initial condition for the transport field is:

C(x,2,t=0)=0 (4.13)

The third-type (Cauchy) or flux-type boundary conditions at the sources

(x = 0) is:
F. (0,2,t)
s - Ule(z) 0<z«< le (4.14a)
= UCm (z) Hm_2 <z< Hm_1 (4.14b)
m-1
= UCmm(z) Hm_1 <z< Hm (4.14c)
where 3
H, = z L. (4.15)
i 351 J

—~—v—~where—Lj—is—the length -of the -jth strip -source.
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(4.10)

D, and D, are the Tongitudinal and transverse dispersion coefficients
and are defined as:

_DX = GLU (4.11)
D, = aqU (4.12)

where o [L] and oy [L] are the longitudinal and transverse disper-
sivities, respectively.

Initially, the concentration in the porous medium is zero. Therefore,
the initial condition for the transport field is:

C(x,z, t=0)=0 (4.13)

268

The third-type (Cauchy) or flux-type boundary conditions at the sources

(x = 0) is:
F. (0,2,t)
— - Ule(z) 0<z< le (4.14a)
= UCm (z) Hm_2 <z« Hm-l (4.14b)
m-1
= UCmm(z) Hm_1 <z< Hm (4.14c)
where i
Hio = ) L. (4.15)
i 521 9

~~ 'where L3 isthe length of "the jth strip source, ~ "~ -7 7~~~

J
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Conditions at the impervious boundaries are:

aC(x,2z,t) _ 0 2 =0 L0 <X <w (4.16)

az

aC(x,2,t) _ g z=H D<x<am (4.17)

9z m

The boundary conditions at infinity are:

yim ¢ (x,2,t) =0 0<z<H (4.18)
yip LB Lo gz (4.19)

4.1.2.3 Assumptions
The following assumptions are made:

e Ground water flow is one-dimensional
e Solute transport is two-dimensional

e The transport domain is bounded by two impervious
boundaries

« The transport domain goes to infinity in the
x-direction

* Hydrogeological parameters are constant
throughout the domain

e Diffusion is insignificant within the fluid field

¢ Adsorption may be approximated by a linear
equilibrium isotherm

* Longitudinal and transverse dispersivities and
retardation factor are constant throughout the
transport domain

4-11

127



INTERNATIONAL TECHNOLOGY CORPORATION

268

4.1.2.4 Analytical Solution
The general solution of Equation 4.1 with pertinent initial and boundary
conditions was determined by IT (1986b). Using this general solution, a

special solution was obtained for a single strip source whose geometry
is shown in Figure 4-3. This special solution is reported in the
GEOFLOW manual (IT, 1986, pp. 3-18 to 3-20).

For the special solution (Figure 4-3), the flux boundary at x = 0 is
defined as:

F, (0,2)
— UCm Dl< z < D1 + 2B (4.20)

=0 otherwise (4.21)

where Cp is the source concentration and 2B is the width of the strip source.

The derivation of the general solution for Equation (4.1) is presented
in Appendix C. The special solution of the general model for a strip
source with boundary conditions defined in Equation (4.20) and (4.21)
is:

C(x,2,t) _ U 28 t
¢ " 0 (02840, ol Fr(u)IFy(u)

- Fy(u) Fy(u)ldu + 2

|
n {s1n[xn(Dl+28)]

ne-18

u
Dx n=1

. t D, »
- sin (3 0q)} cos (x 2) OI Fi (u)exp (- ﬁ; Aqu)

= [Fplu) - Fau) Fy()lde 0 (4.22)

128
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where

F,(u) = exp (!5— - W - !E____u) (4.23)

1 ZDX 4Dde

. 1/ Ryx?
) = Ghp) e (- g ) (4.24)
Fa(U) = 5o exp (X 4 ﬁ”——) (4.25)

3 2Rd ZDX 4RdDx
Rdx U u 1/2
F4(U) = erfc [——'—1/—2 + ? (-R—D-—) ] (4.26)
2(D_R u) d-x
xd
Ay = A n=0,1,2,... (4.27)
m

The integrals in Equation 4.22 can only be evaluated numerically. For
these integrals, the Gaussian integration procedure is appropriate and
provides accurate results. The application of this methodology is
included in Appendix C. A computer program called STRIPIB-FBC-G, was
developed by IT to solve Equation 4.22 for the concentration
distribution C(x,z,t).

4,1.2.5 Numerical Solutions

For the numerical solution, a finite modeling domain had to be chosen
rather than the domain which extends to infinity in the x-direction foE
the analytical solution. The modeling area was chosen to be 75 x 50 m
(246.0 x 164.0 ftz). The Tength of the modeling domain was selected
such that the solute front with the minimum retardation factor and
assigned hydrogeological parameters would not reach the boundary at

x = 75 m (246 feet) at the end of 100 days.

4-13 | 130
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The grid systems for GEOFLOW and SWIFT III are shown in Figure 4-4 and
4-5, respectively. Because GEOFLOW is node-centered and SWIFT III is
block-centered, two different grids were created. The finite-element
nodes of GEOFLOW coincide with the block centers of SWIFT III.

Cartesian coordinates were used in both models (the z-coordinate in the
analytical model is equivalent to the y-coordinate of the numerical
models). For both models, the x-y plane was selected to be the datum
plane. The boundaries at x = 0 and x = 75 m (246 feet) were simulated
as constant-head and constant-pressure boundaries for GEOFLOW and

SWIFT III, respectively. The other boundaries were simulated as no-flow
boundaries for both models. These boundary conditions define a
one-dimensional ground water flow field. Equal seepage velocities were
used in all models. In the numerical models, the values of hydraulic
heads, hydraulic conductivity, and porosity were selected such that the
computed seepage velocity was equal to the seepage velocity specified in
the analytical model. Spatial increments of the grids satisfied the
appropriate criterion (ax < 2aL) to reduce numerical oscillation
(Huyakorn and Pinder, 1983, p. 206).

4.1.2.6 Input Specifications

The input data for these models are given in the following:
* Table 4.4 - STRIP1B-FBC-G model

e Table 4.5 - SWIFT III model
e Table 4.6 - GEQOFLOW model

4.1.2.7 OQutput Specifications

The output consists of computed normalized concentrations as functions
of distance and time for different retardation factors.

4.1.2.8 Results

The computed concentrations as functions of time and distance for
Problems ST-2a and ST-2b are compared for STRIP1B-FBC-G, SWIFT III, and
GEOFLOW. Normalized concentrations versus distance for Problem ST-2a

- are given in Figures 4-6 and-4-7. Figures 4-8 and-4-9 depict the -

a-14 ‘ 131
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TABLE 4.4 268

INPUT PARAMETERS FOR TWO-DIMENSIONAL
ANALYTICAL STRIP1B-FBC-G2 MODEL
PROBLEM ST-2a and 2b

VALUE

PARAMETER SYMBOL S ENGLISH
Seepage velocity ] 0.1 m/day 0.328 ft/day
Longitudinal dispersion 0, 1.0 m2/day 10.76 ftz/day
coefficient
Transverse dispersion 0, 0.1 mz/day 1.08 ftz/day
coefficient
Retardation factor Rq 1 and 2.5 1 and 2.5
The half width B 5m 16.40 ft
of the strip source
Distance to the Dl 5m 16.40 ft
impervious boundary
Distance to the 02 35 m 114.83 ft

impervious boundary

85ee Figure 4-3 for the schematic of the model. Refer to Figures 4-6 through
4-12 for plotted graphs from the model's results.
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TABLE 4.5 268

INPUT PARAMETERS FOR TWO-DIMENSIONAL
NUMERICAL SOLUTE TRANSPORT SWIFT III MODEL
PROBLEM ST-2a and 2b

I. Finite-Difference Grid Systema

Length: (i-direction) 75 m (246.0 ft)
Width: (j-direction) 50 m (164.0 ft)
Number of cells: 475

- Number of layers: 1

II. Water and Solute Transport Parameters

Type of aquifer Confined

Flow regime b Steady-state
Thickness of aquifer 1m (3.28 ft)
Hydraulic conductivity, in x- 1 m/day (3.28 ft/day)

and y-directions (K, and Ky)

Porosity (¢) 0.3
Longitudinal dispersivity (a) 10 m (32.8 ft)
Transverse dispersivity (at) 1m(3.28 ft)
Retardation factor (Rj) 1 and 2.5

III. Boundary Conditions for Ground Water Flow (refer Figure 4-4)

Grid AB boundary Dirichlet conditioq136,787.5 Pa
(53342 x 107" psi)

Grid CD boundary Dirichlet conditioq114,715.0 Pa
(21337 x 1077 psi)

Grid AD boundary No-flow condition

Grid BC boundary No-flow condition

IV Initial and Boundary Conditions for Solute Transport (refer Figure 4-4)

Initial Concentrations (all cells) 0

Grid AB (except the source), BC, No-solute transport
CD, and AD boundaries condition
Source concentration 1 unit

- Seg foqtnoteg atiend of table.
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TABLE 4.5 2
(Continued) . 268
Solute flux of the source celsP 4.34 x 10'2 unit x kg/s
(Cauchy boundary condition) (9.57 x 107" unit x 1b/s)
Solute flux of the source edge cellsC 2.17 x 10‘2 kg/s
(Cauchy boundary condition) (4.78 x 1077 1b/s)

Refer to Figure 4-4 for the finite difference grid.
bsotute flux at the source cells = CorgA

where

(]
]

» o o o
i}

source concentration given in units,

density of water,
Darcy velocity, and

the area of cell at source in the y-z plane.

(unit) (1,000 %) (0.3 x 0.1 %) (1.25 m) (1 m)

= 4.34 x 1()'4 unit x kg/s
CSolute flux at the source edge cells = (1/2) (4.34 x 10’4) unit x kg/s.
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TABLE 4.6

INPUT PARAMETERS FOR TWO-DIMENSIONAL 2 68
NUMERICAL SOLUTE TRANSPORT GEOFLOW MODEL
PROBLEMS ST-2a and 2b

I. Finite Element Grid Systema

Length: (x-direction)
Width:  (y-direction)
Number of elements:
‘Number of nodes:

Type of elements:

II. Water and Solute Transport Parameters

Type of aquifer

Flow regime

Thickness of aquifer

Hydraulic conductivity, in x- and

y-directions (K, Ky)
Porosity (¢)
Longitudinal dispersivity (q)
Transverse dispersivity (a)
Retardation factor (Rj)

75 m (246.0 ft)
50 m (164.0 ft)
432
475
Quadrilateral

Confined
Steady-state
1m(3.28 ft)

1 m/day (3.28 ft/day)

0.3
10 m (32.8 ft)
1 m(3.28 ft)
1 and 2.5

[II. Boundary Conditions

Grid AB boundary
Grid CD boundary
Grid AD boundary
Grid BC boundary

for Ground Water Flow (refer Figure 4-5)

(Dirichlet condition) 2.25 m
(Dirichlet condition) 0.0m
(no-flow condition)

(no-flow condition) :

IV Initial and Boundary Conditions for Solute Transport (refer Figure 4-5)

Initial Concentrations (all elements)

Grid AB (except the source), BC,
CD, and AD boundaries

Source concentration

Solute flux at the source elements

(Cauchy boundary condition)

Solute flux of the source edge elements®

(Cauchy boundary condition)

See footnotes at end of table.

3
0.1875 unit x '(‘1‘—5)7 (6.22 unit x ~=)

0
No-solute transport
condition
10 units
(0.375 unit x -"i) (13.24 unit x fi3)
. day : m day

ft3

day
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TABLE 4.6 268

(Continued)

dRefer to Figure 4-5 for the finite element grid.

bSolute flux at the source cells = C,qA

(10 units) (0.3 x 0.1 a%y) (1.25 m)(1 m) =

3
0.375 unit 1—

day
where
C, = source concentration given in units,
q = Darcy velocity, and
‘A = the area
1 3
CSolute flux at the source edge cells = 5 (0.375) unit x gﬁi'
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normalized concentrations versus time for this problem. These two last
curves correspond to the concentration at points x = 5 m (16.4 ft),

y =10m (32.8 ft), and x = 20 m (65.65 ft), y = 16.25 m (53.31 ft).

The corresponding curves for Problem ST-2b are given in Figures 4-10,
4-11, and 4-12, respectively. The normalized concentration at locations
of x =20 mare y = 16.25 are not plotted for Problem ST-2b because of
“their small values. Review of these figures indicates that excellent
correlation exists among the three analytical and numerical models.

4,2 VERIFICATION PROBLEMS - NUMERICAL SOLUTIONS

The purpose of the three-dimensional solute transport verification was
to test the SWIFT III code simulation capability in the vertical
direction by comparison with other available codes. The Princeton

Transport Code (PTC) was initially selected for this purpose. However,
during the simulation, certain errors were encountered in the handling
of vertical velocity components by the solute transport portion of the
code. Therefore, it was decided to compare the SWIFT III three-
dimensional solute transport results with a GEOFLOW vertical model.

Two different grid systems were used for these comparisons. The

SWIFT III grid was three-dimensional, whereas the GEOFLOW grid was two-
dimensional and corresponds to a vertical cross-section of the three-
dimensional grid of SWIFT III. By assigning pertinent input data and
boundary conditions to the three-dimensional SWIFT III model, it was
possible to correlate the results of the models at any vertical slice.

Different grid sizes were used for Problems ST-3a and ST-3b. Initially,
a grid with element lengths of 10 feet was used to maintain numerical
stability. This verification problem is named ST-3a. In the second
verification problem (ST-3b), the grid element length was increased by a
factor of 10. The purpose of this increase was to test the SWIFT III
numerical stability in field scale modeling.
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4.2.1 Problems ST-3a and 3B: Three-Dimensional Solute Transport

4.2.1.1 Purpose of Problem Selection
Problem ST-3a and ST-3b were selected to test the following capabilities
of the SWIFT III code:

Three-dimensional solute transport
Anisotropic aquifer

Three-dimensional Cartesian coordinates
Variable hydraulic conductivity

Grid dimensions appropriate to the FMPC site
Flux source boundary condition

Numerical stability criteria

4.2.1.2 Description of Problem

The selected problem set consists of constant head boundaries at both
ends of the system. A constant line source is located at the upper Teft
hand of the model. The objective is to simulate solute transport in the

vertical plane under variable hydrogeologic properties.

4.2.1.3 Assumptions
The following assumptions are made:

e The aquifer is confined
e Darcy's law applies throughout the system

s Adsorption may be approximated by a linear
equilibrium isotherm

e Llongitudinal and transverse dispersivities and

retardation factor are constant throughout the
transport domain

4,.2.1.4 Numerical Simulation

The grid system for the three-dimensional SWIFT III model for

Probiem ST-3a is shown in Figure 4-13A. The two-dimensional GEOFLOW.
grid system for this problem is depicted in Figure 4-138. The GEOFLOW
grid corresponds to vertical cross-sections of the SWIFT III grid, para-

1lel to the x-axis. The internal nodes of the finite element (GEOFLOW)

4-16
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grid correspond to the centers of the finite-difference (SWIFT III)
blocks. This permits a one-to-one correlation between cells and nodes,
and facilitates transfer of information between finite-difference and
finite element models. The SWIFT III grid system has four layers and
each layer has 108 blocks (Figure 4-13A). The GEOFLOW finite element
grid system consists of 296 finite elements and 342 nodes (Figure 4-13B).
Constant-head boundaries were maintained at the blocks with i=1 and
i=36. A1l other faces of the grid system were simulated as no-flow
boundaries. For GEOFLOW, the top and bottom boundaries were simulated
as no-flow boundaries; the rest were simulated as constant-head bound-
aries. The solute sources for SWIFT III were assumed to be located at
one of the edgé blocks (i=1) of the uppermost layer. The solute source
for GEOFLOW is located at Node 11 in Figure 4-13B.

The large size grid system was simulated by Problem ST-3b. The

SWIFT III three-dimensional grid system for this problem is presented in
Figure 4-14A. The corresponding two-dimensional GEOFLOW grid system is
depicted in Figure 4-14B. As stated earlier, the grid length for
Problem ST-3b is 10 times larger than for Problem ST-3a. Similar
boundary conditions were used in Problem ST-3b.

4.2.1.5 Input Specifications
The input parameters for SWIFT III and GEOFLOW are given in Tables 4.7
and 4.8, respectively. Theoretical investigation and experience indi-
cate that in a case where the dispersion coefficient is greater than
zero, numerical oscillations can be virtually eliminated if the cell or
element size is selected so that its Tocal Peclet number does not exceed
a value of 2 (Huyakorn and Pinder, 1983, p. 206). This means that

AXx < 2a) where Ax is the length of the cell or element and a| s the
longitudinal dispersivity. The value of a is 100 feet (Tables 4.7 and
4.8) and the longitudinal dimensions of the grids are 10 feet and

100 feet in Problem ST-3a and ST-3b, respectively. These values easily
satisfy the condition given above.

4-17
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TABLE 4.7
INPUT PARAMETERS FOR THE THREE-DIMENSIONAL
SOLUTE TRANSPORT SWIFT III MODEL
PROBLEM ST-3a and 3b
PROBLEM PROBLEM
S$T-3a ST-3b
I. FINITE-DIFFERENCE GRID SYSTEM
Length: (i-direction) 360 feet 3,600 feet
Width: (j-direction) 15 feet 300 feet
Height: (k-direction) 20 feet 65 feet
Number of cells: 432 432
Elevation of datum plane: 0.0 feet 0.0 feet
II. HYDROGEOLOGIC PARAMETERS
Thickness of each layer: 5 feet 15,10,20,20
‘ feet

Hydraulic conductivities

(Layers 1 and 4):

Horizontal 400 ft/day 400 ft/day

Vertical 133.3 ft/day 133.3 ft/day

Hydraulic conductivities
(Layer 2):

Horizontal 200 ft/day 200 ft/day

Vertical 66.7 ft/day 66.7 ft/day
Hydraulic conductivities

(Layer 3):

Horizontal 100 ft/day 100 ft/day

Vertical 50 ft/day 50 ft/day
Type of aquifer simulated: Confined Confined

Flow regime: Steady state Steady state

"7 " Boundary conditions

(Constant-head) 153

Cells i=1, and j=1,2,3 and k=1,2,3
Cells i=36, and j=1,2,3 and k=1,2,3

12 feet
10 feet

12 feet
10 feet
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TABLE 4.7
(Continued)

III. SOLUTE TRANSPORT PARAMETERS

Porosity:

Half-1ife of radioactive component: .

Longitudinal dispersivity:
Transverse dispersivity:
Retardation factor:

Solute source cells?:

Initial condition:

Boundary condition:

Solute source boundary condition:

Total simulation times:

Spatial differencing:
Time differencing:

Method of solution:

3507ute flux at the source cells

INTERNATIONAL TECHN(jLOGY CORPORATION
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0.25

0 years .

100 feet

10 feet

1

i=1, j=1,2,3, and k=1
Zero concentrations
No-solute transport
Third-type (Cauchy)

40 days (ST-3a) and 300 days
(ST-3b)

c1sP
cITC

Two-1ine successive
overrelaxation

CordA where

Co = Source concentration given in units

p = Density of water

q = Darcy velocity (taken from the ground water flow model output), and
A = The area of cell at source in the y-z plane

ft
day

(1 unit)(62.37 1) (2.222
ft
bCIS = Centered in space
(CCIT = Centered in time

1b

)(5 ft x 5 ft) = 3464.6535 (unit x -

day

154
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TABLE 4.8
. INPUT PARAMETERS FOR THE TWO-DIMENSIONAL
SOLUTE TRANSPORT GEOFLOW MODEL
l PROBLEMS ST-3a and ST-3b
PROBLEM PROBLEM
' ST-3a ST-3b
7 “ 1. FINITE ELEMENT GRID SYSTEM D S ' )
. Length: (y-direction) 360 feet 3,600
Width: (x-direction) 20 feet 65 feet
. Number of elements: 296 296
. Number of nodes: 342 342
Elevation of datum plane: 0.0 feet 0.0 feet
' IT. HYDROGEOLOGIC PARAMETERS
Thickness of each layer: 5 feet 15,10,20,20
' ' feet
Hydraulic conductivities
. (Layers 1 and 4):
Horizontal 400 ft/day 400 ft/day
' Vertical 133.3 ft/day 133.3 ft/day
Hydraulic conductivities
' (Layer 2):
Horizontal 200 ft/day 200 ft/day
~ Vertical 66.7 ft/day 66.7 ft/day
' Hydraulic conductivities
(Layer 3):
l Horizontal 100 ft/day 100 ft/day
Vertical . 50 ft/day 50 ft/day
' Type of aquifers simulated: Confined Confined
Flow regime: Steady state Steady state
l'"_‘ " Boundary conditions
(Constant-head)
. Nodes 1 through 9 12 feet 12 feet 155
Nodes 334 through 342 10 feet 10 feet
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TABLE 4.8
(Continued)
SOLUTE TRANSPORT PARAMETERS
Porosity:
Half-1ife of radioactive component:
Longitudinal dispersivity:
Transverse dispersivity:
Retardétion factor:
Solute source node No.2:
Initial condition:
Boundary condition:
Solute source boundary condition:

Total simulation times:

INTERNATIONAL TECHNOLOGY CORPORATION
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0.25

0 years

100 feet

10 feet

1

11

Zero concentrations
No-solute transport
Third-type (Cauchy)

40 days (ST-3a) and 300 days
(ST-3b)

3Solute flux at the source cells = CoqA where

Co

d
A

Source concentration given in units

figure

. ft
(1 unit)(2.222 aay)(S ft x 1 ft)

= 11.11 (unit x ft

Darcy velocity (taken from the ground water flow model output), and
The area of the element per unit thickness perpendicular to the

3
day
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The Courant number, C, controls oscillations of the numerical solution
arising from the temporal discretization. The governing criterion for
numerical stability is C = Uat/ax < 1 (Huyakorn and Pinder, 1983,

p. 206), where U is the ground water velocity and at is the time step.
The time steps were selected in accordance with this criterion.

The solute sources were simulated with the third-type (Cauchy) flux

boundary condition. The solute source cells for SWIFT III are located
at i=1, j=1,2,3, and k=1 (Figures 4-13A and 4-14A). The concentration
of the source was taken to be unity and the calculated solute source for
each cell is given at the end of Table 4.7. The Darcy velocity

(2.22 ft/day) was taken from the corresponding flow model. The calcu-
lated solute source flux is 3464 1b/day for SWIFT III. For GEOFLOW, the
corresponding solute source is located at the Node 11 (Figures 4-13B and
4-14B) and the calculated solute source flux is 11.1 ft3/day. The nodal
Darcy velocity given by the GEOFLOW output is the same as the value
given above (Table 4.8).

4.2.1.6 Qutput Specifications

The output for this problem consists of normalized concentrations as
functions of distance and time for the finite-difference cells and
finite element nodes.

4.2.1.7 Results

The normalized concentrations versus time in Layer 3 at a distance of
13.5 feet from the source is given in Figure 4-15 for Problem ST-3a.
This figure compares the concentrations computed by SWIFT III and
GEOFLOW in a vertical plane. For SWIFT III, the coordinates of this
cell are i=14, j=1, and k=3 and the corresponding node number for
GEOFLOW is 132. Figures 4-16 and 4-17 present the normalized concen-
trations versus distance at 20 days for two different locations. Theée
three figures indicate an excellent comparison between GEOFLOW and
SWIFT III model results.

4-18
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Similar figures have been prepared for Problem ST-3b. Figure 4-18 shows
the normalized concentrations versus time in Layer 3 at a distance of
135 feet from the source. The normalized concentrations versus distance
at 250 days for different locations are depicted in Figures 4-19 and
4-20. Similar conclusions can be made with respect to the larger grid
system used in Problem ST-3b. Excellent agreement is seen between the
results of the two numerical models.

4-19
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5.0 SUMMARY AND CONCLUSIONS

The SWIFT III computer code was selected to evaluate ground water flow
and solute transport for the sitewide RI/FS at the FMPC. An extensive
and independent verification study was performed by IT for Version 2.25
of the computer code. The objectives of the computer code verification
study were to:

+ Determine if SWIFT III functions satisfactorily
with respect to well-established ground water

flow/solute transport codes and with respect to
analytical solutions

e Verify the code's capability to model the
complex, sitewide conditions at the FMPC

+ Establish a high level of confidence in the code
capabilities

» Correlate with the verification process performed
by GeoTrans to show that the computer code was
fully operational on IT's computer system

* Document the procedures and findings of the
verification process

To verify the SWIFT III code, a series of verification problems were
established. Each problem had either an analytical solution or a
numerical simulation by a well-established computer code, or both.

Different analytical and numerical codes were used for the verification
of the SWIFT III code. During this verification process, results of the
SWIFT III code were compared with analytical ground water flow models
(Table 2.1), and with a one-dimensional and two-dimensional analytical
solute transport models (Table 2.2). The results of the SWIFT III code
were also compared with the results of three different numerical ground
water flow models, i.e., MODFLOW, PTC, and GEOFLOW (Table 2.1) and with
the results of numerical solute transport models using.GEOFLON

(Table 2.2). The verification problems were specifically selected to

5-1
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test the capability of SWIFT III to model the hydrogeologic, geochem-
ical, and radiological features present at the FMPC site. These
features include pumping and injection wells, recharge, different types
of boundary conditions, river leakages, different types of aquifers,
various solute transport parameters, and radioactive decay.

This report documents the procedures and findings of the verification _
process. Based on the extensive verification tests performed on

SWIFT III by GeoTrans and IT, it is concluded that the code has been
thoroughly tested and will adequately simulate the features at the FMPC
site. Because SWIFT III performs satisfactorily in relation to other
well-established codes, it can be used with a high degree of reliability
and confidence in the sitewide RI/FS modeling studies.

5-2
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SUMMARY DESCRIPTION OF COMPUTER CODES

This appendix contains a brief description of the
computer programs which were used in the verification

of the SWIFT III computer code.
MODFLOW, and PTC.

These codes are GEOFLOW,
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A.1.0 GEOFLOW

The computer program GEOFLOW (IT, 1986) is a Galerkin finite element
program capable of numerically simulating fluid flow and solute mass
transport in a two-dimensional ground water system. The aquifer can be
confined, semiconfined (leaky), or unconfined. Both transient and
steady state models of fluid.flow and solute._transport can be solved.
In the fluid flow simulations, the aquifer can be nonhomogeneous,
anisotropic, and of nonuniform thickness. Multiple wells with time-
dependent flow rates can also be specified in the model. In the solute
transport simulations, the geochemical reactions such as adsorption,
acid neutralization, and radioactive decay can be incorporated by
specifying proper characteristic coefficients.

The main routine of GEOFLOW contains two mutually dependent finite
element subprograms; one is the flow model which solves the ground water
flow equations, and the other is the solute mass transport model which
solves the hydrodynamic dispersion equation. Result output at user
selected times in the simulation period include: piezometric heads,
velocity and flow (discharge) vectors, concentrations, saturated
thicknesses, and retardation factors for acid-front neutralization.

To supplement the numerical results produced by GEOFLOW, a graphical
postprocessing program permits the plotting of potentiometric contours,
velocity vectors, and isopachs of the other output.

GEOFLOW is also equipped with a "restart" option which enables the
program to carry over necessary information from a previous execution
and to continue the execution after pertinent data are modified
according to the new simulation requirements.

GEQFLOW has been extensively verified and has a user friendly and well
documented manual.

Al 163
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A.2.0 MODFLOW

MODFLOW is a finite-difference ground water flow model. The program has
been developed by McDonald and Harbaugh (1984) and it is also known as
USGS Modular 3-D computer program. This program has been recently
augmented with pre- and postprocessor by TECSOFT, Inc., and renamed
MODFLOW. The model simulates flow in three dimensions. Ground water
flow within an aquifer is simulated using a block-centered finite-
difference approach. Layers can be simulated as confined, unconfined,
or a combination of confined and unconfined. Flow from external
stresses, such as flow to wells, areal recharge, evapotranspiration,
flow to drains, and flow through riverbeds, can also be simulated. The
finite-difference equations can be solved using either the Strongly
Implicit Procedure or Slice-Successive Overrelaxation.

The code structure consists of a Main Program and a series of highly
independent subroutines called "modules." The modules are grouped into
"packages." Each package deals with a specific feature of the hydro-
logic system which is to be simulated, such as flow from rivers or flow
into drains, or with a specific method of solving linear equations which
describe the flow system, such as the Strongly Implicit Procedure or
Slice-Successive Overrelaxation.

The division of the program into modules permits examination of specific
hydrologic features of the model independently. This also facilitates
development of additional capabilities because new modules or packages
can be added to the program without modifying the existing modules or
packages. The input and output systems of the computer program are also
designed to permit maximum flexibility.
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A.3.0 PRINCETON TRANSPORT CODE (PTC)

The Princeton Transport Code (PTC) was developed by the staff of
Princeton University, Princeton, New Jersey (Babu et al., 1987). PTC is
a three-dimensional ground water flow and solute transport code. It
takes advantage of the ability of two-dimensional finite elements to

represent irregular shapes accurately. A finite element formulation is U

applied to the horizontal cross section and the finite difference
methods to the vertical direction. It treats single-phase Darcy ground
water flow in fully three dimensional space under nonisothermal
conditions. The code has the capability to model layered aquifer
systems. The code offers a wide choice of boundary conditions such as
prescribed heads, nodal injection or withdrawal, constant or spatially
varying infiltration rates, and elemental source/sink. The hetero-
geneity in aquifer hydraulic conductivity and porosity can be described
by geologic unit or by explicit data for given elements.

PTC is written in standard FORTRAN 77. The program is divided into five
groups of program units. The code is structured to do the following:
The (nearly) steady state flow is either computed first, or is assumed
to be known from previous runs of the model. Utilizing these known or
given heads,'the transport section of the code then computes the
velocities and the chemical concentrations.
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APPENDIX B
REFERENCES FOR VERIFICATION PROBLEMS

This appendix contains references to input and
output file names and figures and tables pertinent
to the verification problems.
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APPENDIX C
ANALYTICAL SOLUTION OF TWO-DIMENSIONAL HYDRODYNAMIC DISPERSION
EQUATIONS WITH FLUX SOURCE BOUNDARY
174
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C.1.0 PROBLEM DESCRIPTION

The governing equation and the analytical solution of two-dimensional
hydrodynamic dispersion equation with flux source boundary are given in
Chapter 4.0 (Equation 4.22). The solution of this equation was used to
verify the SWIFT III code, as part of Verification Problem ST-2. This
appendix contains the derivation of Equation 4.22. A portion of the _

(S

.

—J)

W

“Chapter 4.0 is reproduced in this appendix to provide a completeness and

continuity.

A schematic drawing of the general multiple solute sources problem is
given in Figure C-1. The problem under consideration is transient
two-dimehsiona] solute transport in a unidirectional ground water flow
field between two impervious boundaries with the third-type (Cauchy) or
flux-type boundary condition at the sources. The solute sources are
located irregularly along the z-axis in a unidirectional velocity field
along the x-axis. The source concentrations are functions of the
distance along the z-axis. The medium extends to infinity along the
x-direction and has a finite length, Hm, along the z-axis. In

Figure C-1, Cmi represents the source concentration at the ith strip.

C.1.1 GOVERNING EQUATION N
The two-dimensional hydrodynamic dispersion equation in a unidirectional

flow field, with linear equilibrium adsorption and first-order decay,
can be written as:

)

Rd%%=DX§:g—+DZ-:Z—g-UZ—§-Rde (C.1)
where
C = mass of solute for unit volume of fluid [M/L3],
R4 = retardation factor [dimensionless],
v = decay constant [1/t],
U = seepage velocity [L/t],

o

S

C-1
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X,2 = Cartesian coordinates [L],

Dy,0, = Tongitudinal and transverse dispersion coefficients,
respectively [Lz/t]

The seepage velocity, U, appearing in Equation C.1 is the ground water
velocity which is defined in terms of Darcy velocity, v, and
porosity, ¢, as:

268

U= % (C.2)

The longitudinal and transverse dispersion coefficients and are defined

as:
DX = O.LU (C.3)
DZ = aTU (C.4)

where o) [L] and of[L] are the longitudinal and transverse disper-
sivities, respective]y.

C.2.0 INITIAL AND BOUNDARY CONDITIONS

Initially, the concentration in the porous medium is zero. Therefore,
the initial condition for the transport field is:

C(x,2,t=0)=0 (C.5)

The flux-type or third-type (Cauchy) boundary conditions at the sources
(x = 0) is:

— Ule(z) 0 <z<H (C.6a)

I}
[ o
(]
—~
N
S’

Hop <z <H (C.6b)

C-2
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where j
H. = 2 L. (C.7)

l = uc (2) Ho_ 1<z <Hy (C.6c)

where Lj is the length of the jth strip source.

Conditions at the impervious boundaries are:

aC(x,z,t) _ 0 2 =0 . 0 <X <o (C.8)

9z

C(x,2,8) 0 z=H 0 <X<w (C.9)

az m

The boundary conditions at infinity are:

1}
o

}ig C (x,z,t) 0<zc«< Hm (C.10)

' yin Lzt 0<z<H (C.11)

+ ® aX

C.3.0 GENERAL SOLUTION FOR THE LAPLACE TRANSFORM FUNCTION

Taking the Laplace transform of Equation C.1 with respect to time and
using the initial condition given by Equation C.5 yields (Batu, 1983):

Ry (s+)u =0, 2=+ 25 - u 2 (C.12)




- e o on o=
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in which u is the Laplace transform of C. By applying, the method of

separation of variables with u(x,z) = X(x)Z(z); the general solution can
be obtained as [Batu, 1983; Equations 23 and 24]:

X(x) = A eXp(g%; - px) + By exp (gﬁ; + px) (C.12a)
I 1(z) = Az‘sjg(;z) + B, cos(xrz) L (C.12b)
where
D R 2
P = lﬁz- 22 ﬁg (s +v) + _U_2.11/2 (C.13)
X X 4Dx

in which A1, Bl’ A2, and 32 are constants. To satisfy the conditions
given by Equations C.10 and C.11, By and A, in Equation C.12 must
vanish. Equation C.9 implies that the following equation is the
condition for the values of i:

>

1]
I|3
=

n=0,1,2,... (C.14)

3

Introducing the values in the u(x,z) solution gives:

v u
| u(x,z) = nZO A exp (5%; - p,x) cos(r2) (C.15)
where
1/2
oD Ry u? .
P, = g~ An *p— (s+v) + =51 (C.16)
X X 4Dx

The general solute flux equation along the x-axis can be written as:
aC

F,(0,2)
S =UC-D, o (€.17)

Using the Laplace transform of Equation C.17 with the boundary condition
stated by Equation C.6 can be written as:

C-4
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= (W - D, s (C.18)

Taking the derivative of the solution u(x,z) given by Equation C.15 with
respect to x, and substituting it in Equation C.18 gives:

|-
s T N B e

FX(O,z) ® '
—— = } B_cos(x z) (C.19)
. ¢-——Ly=n n -
where
U
B, = A, (5 + Dxpn)s (C.20)

Consideration of the right hand side of Equation C.19 as a Fourier
cosine series for the interval z = 0 to H, yields (Churchill, 1941):

H
" F(0,2)
B

-2
Bn = - cos(xnz)dz (C.21)

Substituting Equation C.21 in Equation C.20 and solving for A, yields:

cos(xnz)dz (C.22)

Introducing Equation C.22 into Equation C.15 and using conditions of
Equation C.14 gives:

u(x,z) = ug(x,z) + up(x,2) (C.23)
where
H
" F (0,2)
uy(x,2) = —5—2 % dz] exp (o - Py x) (C.24)
Hm(§ + Dxpo)s 0 X .

C-5
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H
® m F_ (0,2)
uy(x,2) = P U2 —5—;———— cos(xnz)dz}
n=1 Hm (5 + Dxpn)s 0
Ux '
* exp (55— - pnx) cos(xnz) (C.25)
X

In Equation_C.24, pg_is_the_value-ofp.,-given-by-Equation-€+165—for
n=0.

Equation C.23 is the general solution for the Laplace transform function
and is valid for any solute flux distribution at x = 0 (Figure C-1).

C.4.0 INVERSE LAPLACE TRANSFORM FOR THE GENERAL SOLUTION
To solve Equation C.23 and obtain concentration distribution it is

necessary to perform inverse Laplace transformation. The inverse
Laplace transform of Equation C.24 can be expressed as:

fl(s-b)
Uy (x42,5-b) = S (C.26)
where
U’ (C.27)
b=-v-—oro c.27
4Dde

Substituting for values of Po from Equation C.16, f{(s-b) can be written
as:

(s-b) 2 [Hm Fx(O,z)
f.(s-b) =
1 hly+ (RO, (s-b)1"/%) "0 ¢

dz]

R
s exp (350 e (- (52 (500112
X X

C-6 181
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Using the convolution (or Faltung) theorem, Equation C.26 can be
l expressed as (Spiegel, 1965):
' f,(s-b)
C,(x,z,t) = L1 {uy(x,2,5-b)} = L1 {—1———
. 1 1 s
I = Y F (u)du (C.29)
0
' where L‘1 is the symbol of the inverse Laplace transform.
' Now, using the first translation or shifting property (Spiegel, 1965):
i g t u
Fr(t) = L7 {f(s-b)} = K, e "Gy(t) exp(ﬁ;—x) (C.30)
! ]
L {91(5)} = Gl(t) (C.31)
' where
l 2 ?m F.(0,2) )
Ko = 7 | dz] (C.32
' 0 Ho i) ¢
1/2
R.s
l where expl-(z1)  x
91(5) = X 172 (C.33)
] u . ReS
Ol + )
X X
' The inverse Laplace transform of Equation C.33 is [Carslaw and Jaeger,
l 1959, p. 494, Equation C.12]:
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l G, (t) = ( x )1/2 exp (- Rdxz) Rt —”2"—)
1 Ryt 4Dt 2R D, 2D, 4RdDX
' R .x 1/2
erfe [— >+ 3 (250 (c.34)
. 2 (D.R,t) d x
xd
l From Equations C.29, C.30, C.32, and C.34, the following results:
t
l C(x,2,t) = K, (j) Fp(u)[Fy(u) - F3(u)F,(u)]du (C.35)
in which Fy(u), Fo(u), F3(u), and Fg(u) are expressed by the following
l equations '
i P = eop (- w - L) (C.36)
1 ZDX 4Dde
2
R x
l _ s X 172 d
Fz(u) - (anU) exp (' 4Dxu) (C°37)
Fo(u) = g exp (Ux + uy ) (C.38)
. 3 2Rd ZDX 4Fde
R x '
i Fa(u) = erfe [—Lop 4+ § ()12 (C.39)
2(D_R u) d-x
xd
' The inverse Laplace transform of Equation C.25 can similarly be taken
and expressed as:
| c-8 183
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© D
2
Cy(x,2,t) = nzl K Fy(u) exp (- ﬁi AU)

* [Fy(u) - F3(u) Fy(u)ldu (C.40)

where

Hm FX(O,z)

0 ¢

-2
Kn = Hm cos(xnz)dz (C.41)

and rp, Fy(u), Fp(u), F3(u), and F4(u) are defined by Equations C.14 and
C.36 through C.39.

The concentration at any point and time could be calculated by adding C1
and CZ

C(x,z,t) = Cl(x,z,t) + Cz(x,z,t) (C.42)
which is the inverse Laplace transport Equation C.23.

C.4.0 SPECIAL SOLUTION FOR A STRIP SOLUTE SOURCE
The geometry of a solute strip source is shown in Figure C-2 which is a
special case of Figure C-1. The boundary conditions at x = 0 are
expressed by Equations 4.20 and 4.21. Using these equations in
Equations C.32 and C.41 and after simplification, the solution for the

normalized concentration distribution given by Equation (4.22) could be
obtained.

C.6.0 NUMERICAL INTEGRATION PROCEDURE

The integrals in Equation 4.22 could only be evaluated numerically. For

-these _integrals,_the -Gaussian-integration-procedure-was -used.—Because--——- -~ --
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the integrals in the aforementioned expression have the limits 0 and t,
whereas the Gauss method requires limits of -1 and +1, a change of
variables was performed, i.e.,:

g = % (u'+1) (C.43)

Thus, when u' is -1, u is 0; when u' = +1, u = t; and u' becomes the

- s = s =
i :
|

variable—in-the-Gauss—integration:

du =3t du’ (C.44)

With the combination of Equations 4.22, C.43, and C.44, a computer
program called STRIP1B-FBC-G, was developed to compute the normalized
concentration. The computer program has the capability to use 4, 5, 10,
20, 60, 104, or 256 Gauss points.
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APPENDIX D
NOMENCLATURE

This appendix contains the nomenclature for commonly
referenced variables in the text and figures.
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TABLE D.1
LIST OF ACRONYMS

|
'

GWF Ground water flow

ST Solute transport

PTC Princeton Transport Code

MODF LOW U.S. Geological Survey's three-dimensional finite-
difference ground water flow code

SWIFT Sandia Waste-Isolation Flow and Transport Code

GEOFLOW International Technology Corporations ground water

flow and solute transport code
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TABLE D.2

NOMENCLATURE FOR COMMONLY USED VARIABLES

268

|
)
!
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. VARIABLE DEFINITION DIMENSION SE(I:FT?(])’N
DEFINED
]
l B Half-source width L 4.1.2.4
C  Mass of solute for unit volume of fluid M/L3 4.1.1.2
Cn Radionuclide concentration M/L3 4.1.1.2
l D  Dispersion coefficient L2t 4.1.1.2
D4 Distance L 4.1.2.4
l D,  Logitudinal dispersion L2/t 4.1.2.2
D,  Transverse dispersion coefficient Lz/t 4.1.2.2
' Fe  Solute flux in the x-direction M/ (L2t) 4.1.2.2
Hm Distance between the impervious boundaries L 4.1.2.2
l h Hydraulic head L 3.1.3.2
Kpg Product of branching ration and a Dimensionless 4.1.1.2
daughter-to-parent mass fraction
' Q Extraction or flow rate L3/t 3.1.1.2
q Recharge L/t 3.1.3.2
l r Radial distance L 3.1.1.2
Rq Retardation factor Dimensionless 4.1.1.2
S Storativity Dimensioniess 3.1.1.2
l s Drawdown L 3.1.1.2
T Transmissivity L2/t 3.1.1.2
l Ty Transmissivity in the x-direction L2/t 3.1.1.2
Ty Transmissivity in the y-direction L2/t 3.1.1.2
' £ Time t 3.1.1.2
u Seepage velocity L/t 4.1.2.2
l U Retarded interstitial velocity of L/t 4.1.1.2
radionuclide
u Variable Dimensionless 3.1.1.2
| |
i
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TABLE D.2

' (Continued)
FIRST
VARIABLE DEFINITION DIMENSION SECTION
' DEFINED
' v Darcy velocity L/t 4.1.2.2
W Well function Dimensionless 3.1.1.2
' X Coordinate L 3.1.2.2
y Coordinate L 3.1.2.2
l Z Coordinate L 4.1.2.2
al Logitudinal dispersivity L 4.1.1.2
l at Transverse dispersivity L 4.1.2.2
8 Dirac delta function 1/L 3.1.1.2
. F) Porosity Dimensionless 3.1.4.4
v Decay constant 1/t 4.1.1.2

1
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