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1.0 INTRODUCTION

This section discusses the overview of the K-65 Probabilistic Risk
Assessment (PRA) including the background and the nature of the
problem. The task of performing a risk assessment on structures
containing radioactive materials includes both the probability of failure of
the structures and the consequences of the failure. In this way both the
probability of failure and the probability of human exposure are considered
in the risk estimates. The objective of this study is to evaluate the risk
associated with the K-65 silos in terms of the potential for human exposure
from environmental radioactive contamination. The basis of this study is
centered around the existing or current conditions of the silos. The
assessment considered a five year time framework for the analysis. This
point is critical in terms of both the determination of the failure probability
and modeling the environmental transport of contaminants as a result of a
release of the radioactive residue material. There are essentially three
tasks in evaluating the risk from the silos: assessment of the failure
potential, estimation and prediction of the environmental transport
potential, and the potential for exposure and dose assessment.

The risk assessment project consists of three coupled problems
linked in parallel. The problems are: the silo structure analysis, 2) the
release mechanism and transport of contaminants, and 3) the assessment
of exposure and dose. Figure 1.1 illustrates this approach and delineates
the tasks associated with each path. Evaluation of the potential failure
modes required extensive background research on both the silo structures
and contents. Block diagrams were constructed to illustrate the inter-
dependence of the various components with a specific failure mode. A
failure potential was evaluated after which a release term was determined;
then a pathway analysis was performed.

Back nd Information

The background information required in order to evaluate the risk
imposed by the silos covers a variety of areas. These areas are presented in
the following manner: 1) history of the silos, 2) data collected, and 3)
assumptions and conditions applied.

The history of the silos is necessary in order to evaluate two
important aspects of the study: 1) the nature of the waste and the 2) the
design and construction of the silo. Specific information was obtained and
evaluated describing the early stages of design, construction, application,
and later modifications to the structures. Additionally details covering the
waste mass, including the method of waste treatment and composition,
were obtained and assessed.
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The structures considered in this assessment are silos 1 and 2.
These structures were built between 1951 and 1952 in order to provide an
interim storage capacity for the residues of the pitchblende processing.
These residues were assigned the identification name of K-65 in reference
to the radium bearing raffinate present in the processed pitchblende.

The structures are essentially cylindrical concrete storage vaults.
The original silos included a drainage system in the floor, walls with
access vents for dumping the raffinate, and a dome cover with a number of
penetrations or access ways. The overall system for the storage of the
residues also include a sump tank for holding the residual moisture
collected from the drying slurry. The silos were originally free standing
structures approximately 80 feet in diameter and almost 36 feet high at the
center. Figure 1.2 and 1.3 depict the-silo .structures (1 -4) including the
addition of the earthen berm around silos 1 and 2.

Detailed engineering drawings and various reports were evaluated
for additional details of the original design and construction. Information
concerning the modifications to the silos such as the earthen mound,
surrounding the walls of the silo, and the additional support structures
added to the dome center are also taken into account in the modeling and
analysis. The time span between initial construction, use, and subsequent
modifications is also required in order to evaluate the overall failure
potential of the structures.

The contents of the silos are predominantly composed of residues
obtained from the processing of uranium ore. The primary radionuclide
present is radium-226; however, other radionuclides in the decay chain as
well as small concentrations of uranium and thorium are expected to be
significant in the final inventory calculation. The exact quantity of radium-
226 present has not been provided; however, a credible range has been
determined based on existing reports and other related papers or memos.
The range is expected to be between 2,300 to 4,600 grams of radium
(WMCO,1989). This correlates to an activity of 2,970 to 4,600 Curies (Ci). .
Since the half life of radium-226 is 1600 years the activity is not expected to
have changed significantly over the thirty plus years that the waste has
been residing in the silos. The composition and form of the material in the
silos considered in the evaluation of the release potential and the ultimate
transport in the environment.

Another aspect of the source term evaluated was the radon-222
content. The half life of radon-222 is 3.8 days and can easily be taken to be in
secular equilibrium with the radium-226 parent. The production rate of
radon is simply the decay rate of radium-226 multiplied by its activity. The
content of radium-226 therefore has the potential of producing
approximately 2,970 to 4,600 Ci of radon gas within the silos. The actual
quantity of radon-222 available is the determined by the production rate
minus the loss rate. There are essentially two loss mechanisms: 1) the
natural decay of the radon gas (3.8 day halflife and 5.5 day mean life) and
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the escape of the gas from the silos. The nature of radon, being an inert
gas, results in the continual release of the radionuclide from cracks, pores,
or openings in the concrete structure. The better the silos are sealed the
less radon that will be able to escape prior to decay. This imposes a number
of additional considerations on the risk assessment project particularly in
terms of the release modes. The silos may only suffer cracking or partial
damage and the potential source term can still be significant. All of the
radionuclides must be considered and evaluated in terms of source
strength, transport potential, and eventually their contribution to the dose
of the public and the work force on site.

The data reviewed for this project was extensive. Data was also
evaluated concerning the physical nature of the environment in the vicinity
of the silos, the meteorological and- seismological characteristics of the
region, and the location, size, and nature of the population centers in the
vicinity of the site. Figure 1.4 illustrates the vicinity near the K-65 silos.
The quantity of data required is of course dependent on the confidence of the
results needed as well as the activity of the source term and the potential for
transport.

Information concerning both seismic activity and severe weather in
the region was collected and evaluated to determine the probability of silo
failure and the potential mechanisms for environmental transport. The
frequency and the severity of severe weather will provide a basis for both
failure probability and the atmospheric transport potential of the silo
contents. The frequency and severity of seismic events, however, will only.
yield part of the solution. Once the failure of the silo is postulated, based on
seismic activity, then the atmospheric and other environmental conditions
at the time of the failure must be considered in order to predict the release
and distribution of radionuclides.

Data requirement for the structural condition of the silos was an
integral part of this analysis and had a direct bearing upon the potential
failures present. The structural analysis conducted by Camargo
Associates, Limited (Cincinnati) has been studied in depth and was used to
form the basis of the failure probability of the structure. The purpose of this
analysis was to determine the structural stability of the silos, and to identify
any potential structural problem that would require remedial action. The
conclusions of this study have a direct bearing upon this present analysis;
the non-destructive testing results were used to identify and quantify the
possible failure mechanisms.

A number of key assumptions were made in order to evaluate the
failure probability and the transport probability. Some assumptions were
dependent on the detailed data or information available. Others were
determined by the nature of the study. The goal of this study was to
estimate the risk associated with the silos over a five year time frame. This
time span dictated the bounds of the transport potential, the probability of
silo failure, and the activity of the source term. The specific assumptions

1-6 12



Figure 1.4: Diagram Showing The Topography In
The Vicinity Of The K-65 Silos

. —— — !
. e N \._.. Y

: ST - -

R T SLIIN . . b . . _o_.,.

L mma ERTOT -.".---.-_-_:_‘k. v

—— . — ] Lt l'g- — -
: \— L . \\ . . J 2
- - ] - -
d \ 7 flu
> -}

N ~ \ A
L AN N4 - - xi"—} ~
/ - . - ' -c':
Tk J -
- — [ 74 ’ - N
. ¢ ) A A
s == STmEI)
— — s T \J)ﬁ\
: »
- . //\') \
’ p 8
VETALS CXICE STORAGE , ( !
Fauvan 334C 37642 ! / ol )
.o 7] [
i AN RN .
| \ \l '\ é ,

N
)

AQ'w
n ssepe 19 _off

O

Limi? G&R

<

Continve ACr:

X !
)
¢4
U
n
-4
)
0
T
(3]
m

N

~
.

.

[N

a

(v}

]

»

]
~
ia

~

°
~
~ 7

O il
/
\
/
Q
\_/:‘\_’/’

2007

13



used in this project are discussed as required in the evaluation of the basic
event probabilities and in the modeling of the transport processes as well as
with the pathway and dose analysis sections.

1 vervi r ilistic Rigk

This section is included to provide information on the nature of risk
assessments concerning the failure of some structure or composite of
systems and structures. The methodology described here was first
employed in the evaluation of the potential for a severe accident at a nuclear .
power reactor. It is important to note that this study is an adaptation of
nuclear industry approved methodologies. Where necessary, Nuclear
Regulatory Commission PRA procedures have been implemented for this
analysis, however, due to the difference in scenarios, some concepts have
been modified for adaptation to this study.

The assessment of risk with respect to the K-65 silos is intended to
achieve the following objectives: 1) identify initiating events and event
sequences that might contribute significantly to risk, 2) provide realistic
quantitative measures of the likelihood of the risk contributors, 3) provide a
realistic evaluation of the potential consequences associated with a
hypothetical failure of the silo structures, and 4) provide a reasonable risk-
based framework for making decisions regarding the continued storage,
removal, or other alternatives with respect to the radioactive inventory. The
risk associated with the K-65 silos is considered linear, and can be
represented as in Equation 1.1.

Risk = probability x consequencesor R=px C (1.1
where:
R - Risk
p - Probability
C - Consequences

Clearly the probability in this equation relates directly to the potential
failure of the silo in some given time frame. In this case the term potential
failure relates directly to structural failure of the silos and does not relate to
the continuous release of radon gas. The equation is the same in the
continuous release case with the probability of release or "failure” equal to
one. The consequences are then represented in two parts: 1) the failure of
the silos and 2) the dose (therefore the health impact) received as a result of
the release of radioactive contaminants to the environment. The modeling
used in this study also provides an estimate on the probability of a given
dose (to the population or a maximally exposed individual) from a given
source term. In this way the PRA methodology is being expanded to
include the environmental transport as well as the failure modes of the
structure. In this way the probabilistic and deterministic nature of the
environmental transport modeling can be investigated. The results of this
facet of the risk assessment will provide detailed information on the
potential for transport in the near and far field as well as in the near and

1-8
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long term. The individual details of the methodology will be covered in a
latter section. The intent here is to provide some of the basic concepts
associated with this type of study.

The basic components of a PRA analysis are: 1) familiarity with the -
system, structure, or plant, 2) initiator selection, 3) building the event trees,
and 4) developing the fault trees. The familiarity component of the project
is obviously reflected in the background research and the initiator selection
process which must take into account situations (events) which have the
potential for inducing failure of the silos. The remaining considerations
relate to the modeling of the failure modes, the environmental transport,
and the exposure scenarios. These considerations are taken into account in
the building of comprehensive event and fault trees.

The event trees are used to describe all possible outcomes from a
given initiator. The trees take into account the structure and the possible
ways in which a failure can lead to a release of radioactive material. A
typical event tree is illustrated in Figure 1.5 where the failure or success of
the individual events can lead to the release of radioactive material. Each
path illustrated in the tree is a potential scenario and is labeled a sequence.
A typical sequence or path is illustrated in Figure 1.6. The probability of
each event in the sequence is multiplied and the result is the total
probability of that sequence.

The use of the event trees provides for the possibility of ranking the
various events in order of highest to lowest probability. This ranking is the
first step in quantifying the overall risk associated with the silos. An event
tree will be developed for each failure mode and each release mode. The
individual branches in the event tree are considered a top event in a fault
tree. The relationship between the event tree and the fault tree is illustrated
in Figure 1.7. This figure clearly shows that each specific failure branch of
the event tree must have a corresponding fault tree. The fault tree provides
the probability of failure for that event. The probability of success is simply
- one minus the probability of failure. Ultimately in the risk assessment the
central concern is on the failure probability since if the system is successful
then there is no risk. The discussion that follows describes the fault tree
methodology and the concepts of the "OR" and "AND" gates used in the
design of the trees. This method follows from the constructs of "Boolean
algebra" or logic analysis.

Fault tree analysis is a technique by which many events that interact
to produce other events can be related using simple logical relationships
(AND, OR). These relationships permit a method for building a
mathematical model that statistically represents the system under
consideration. The evaluation of the probability of the system responce (silo
dome, wall, and floor) is then determined by the individual basic events.
The basic events are determined from the detailed analysis of the results of
the non-destructive examination. To construct a fault tree which best
represents the system it is necessary to take into account all possible events

N
L

~
Lo 15



6]

S “q1 IL
ha_—_ﬂaﬁoh& Qmaw—wm omww—wm wmao—wm 34 Q éﬂ hOa&_u_CH
jusay e:om v_ﬂU_A mzowmaU ——&3 1omo] QEOQ ——&3 19 D ova:.ao.b
so[Ig 98ex0)g G9- J0 994, YUIAY (opeuao],)

S9040] [eInjeN wox g A1

agojug JO Sso]

:g'1 @angryg

16

ne A

1-10



2007

[

“4S 7 ¥'T £q pajoudp SSBU JISBM 3}

([njSS229NS ST JUIAJ Y} JIUIS padu
§5900N8 £( pamojjoj 10jeIjIUl OPBUIO], =

Jo sjuduoduiod pinbif pue pr{os ute}al
[ | 03 ounrej Aq pamo[[oj asea[a1 SN0ISES qrorduat 9y ‘(] d1n[iej dwop Aq pamo[[oj

aI13Jad jou) d1ngonIs [[em Iaddn ayj jo
(4S + YT + A » 11} :90udnbIg dIN[IE]

|
| |
1 wn
1 &
1 3
&0
— 0
J
—
|
fnqeqoid wmamm.m omame umame AT a Bwn SSW._E
skl pt{os pinbi sNo9sEN) lem oMo uloq (1BM 13060 opeulo],
souanbag [eo1d4], v Sunjensn(y] soiS d3e10S ¢9-Y 104

931, JUSAY] (OPBWLIO],) S0 [eIM)eN WO

KyaBayuy 3O sSOT :9°T MBLY

17

R

1-11



w
‘qoid aanpieg m
+ -
S
1
PR
-5 1 ) M1 a mn .—3@——%—5
A111q8qod eseopy | @sea|dy 9SBOY | em 1omoT swoq | uem 1eddn | opgysop
juaryg pPHoS m::U—.H sNoIsey)
unjex)snyyl sofis aderos G-y

§901], JUSAT PUE J[NE ] USM)OF UOTe[oY oYL 3
J0,J 934, JUSAT] (OPBWIO],) S0 [eIMJBN WOoL]

Ludayug 3O ssorT LT 3L

18

1-12



2007

which may cause a potential failure of that system. In order to accomplish
this task detailed knowledge of the system as well as its function is
required. Once the system function is fully defined, block diagrams
relating one component or subsystem to the others can be constructed. The
block diagrams are evaluated against the actual system and modifications
are made if needed. The constant refinement of the block diagrams forms
the basis of the fault tree construction. Once the final block diagrams are
made the interaction of the components and subsystems are modeled using
logical constructs following Boolean Algebraic techniques.

The relationships can be modeled using these methods and then
represented using the logical gates such as "AND" and "OR" as well as
others. These two gates are the basic operators used in Boolean Algebra.
The "AND" gate implies that all of the events are required-to occur to reach
the next level of results. The "OR" gate means that any of the events can
occur and the next level of results is reached.

In fault tree construction, the system failure event that is to be
studied is called the top event. Successive subordinate (subsystem) failure
events which may contribute to the occurrence of the top event are then
identified and linked to the top event by a series of logical functions ("AND"
and "OR" gates). The subordinate events are subsequently broken down to
their logical contributors, and in this manner, a fault tree is constructed.

When a contributing event can no longer be further divided, the
‘corresponding branch is terminated with a basic event. Basic events are
statistically independent unless they are common cause failures. Such
failures are those that arise from a common initiating event. Such is the
case for the external events (seismic activity and severe weather) used in
this analysis.

19
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1.2 K-65 Structural Evaluation

The structural evaluation of the silos was made by Camargo
Associates and Bechtel National Incorporated. The structural evaluation
was made using finite element modeling. The finite element model was
used to simulate a variety of loads on the silo dome and walls. Both live and
dead loads were evaluated and the results were provided in terms of

stresses and strains on the structure as well as critical loads to the dome
center and outer regions (Camargo,1986; Bechtel,1990).

These two studies were the principal sources of detailed information
concerning the silo structures for the UC risk assessment. The data,
results, and conclusions obtained in these reports was considered in the
analysis and the inconsistencies -and ‘discrepensies in-the data and results
were accounted for in as a practical fashion as possible.

The limitations associated with the Camargo and Bechtel reports had
significant influence on this study in the areas of structural responce to a
variety of forces and on the current state of the structure. The primary
affect is in the estimation of degradation rates associated with the
reinforcing steel and concrete quality. The determination of the effect a
tornado willl have on the silo structure is also affected by the uncertainties
in the two studies. Details of the responce of the silos to tornados and to
earthquakes is covered in the next section.

1-14 20
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|3 Failure Potential

The modes of failure considered in the risk assessment cover two
main areas: 1) natural forces and 2) concrete degradation. These two areas
were selected initially due to the severity of the consequences in the event of
failure. Since the risk is the probability multiplied by the consequences, the
risk will be greater provided that one or the other or both of the following are
available; 1) the probability of failure is high or 2) the consequences of
failure are high. The failure modes or initiators considered are: 1) failure,
of the silo, due to concrete and supports suffering extensive fatigue from
weathering and wear, 2) failure due to a seismic event, and 3) failure due to
severe weather. The first failure mode corresponds to the case where the
consequences are low to moderate and the probability is considered great.
The second failure mode is taken to.be moderate to low probability and
moderate to low consequences. The third failure mode is considered to be a
moderate to high probability with the consequences expected to be quite
severe.

These three failure modes are therefore expected to bound the risk
associated with the K-65 silos from low to high. The analysis illustrates the
relationship between the failure modes considered, the resulting
consequences, and the overall risk. Failure sequences containing the event
trees for each failure mode will be described in detail in section 2 of this
report. The total number of possible sequences is directly related to the
number of events in the tree. In the case of the-degradation of the concrete

-failure mode, the event tree has a total of four events plus the initiator. The

total possible sequences is then simply 16 or 2" where n represents the
number of events not including the initiator. The total possible paths are
then considered the failure sequences for the system in question.

The probability of each sequence was evaluated and ranked according
to significance. These failure sequences are then linked with the release
and transport sequences in order to evaluate the total probability of
exposure given some initiating event. The overall relationship of these
event trees are decribed in section 2. '

1.4 Release Potential

The release potential of the residue material was evaluated after
determination of the possible failure modes. The release potential was
much more difficult to address due to uncertaintities in the waste mass
form and composition. The amount of water and silicates can alter
significantly affect the mobility of the radioactive contaminant component.

Detailed analysis of the forces associated with the initiating events
and external events resulted in a variety of scenarios depicting the release
of waste material. The types of release mechanisms involved consist of
removal of the waste material by means of wind action, rain or flooding,
violent seismic events, and by human interaction. The human interaction

- 21
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potential was eliminated due to security measures taken at the site. The
results of intense seismic action can affect the silo structure but do not
produce accelerations neccessary to remove waste residues.

The effects of wind and rain however must be evaluated in detail to
examine the possibility that waste material will be released following a
hypothetical failure of the structure. The three principal initiating events
considered in this study (seismic, severe weather, and weathering & wear)
were evaluated and found to correspond to two primary groups of release
potentials. The first group consisted of normal or calm weather conditions
(including light rain) and the second was determined by turbulent weather
conditions and violent periods of precipitation.

1.5 Exposure Assessment

As described above, event trees relating probabilities to the transport
routes were developed. This facet of the project required a new approach to
environmental transport modeling using the PRA methodologies. This
method has the advantage of enabling the analyst to quickly determine the
significant transport routes from the total array of mechanisms. This
determination is made using event and fault trees to represent the physical
situation. The event trees have a number of other factors quantified in
addition to the sequence probability. These other factors will include the
time frame under consideration, the concentration of the contaminant, and
the spatial dependence of the transport process. Applying the PRA
approach to the transport processes results in a function instead of merely
a probability. This function was manipulated in a manner consistent with
accepted practices resulting in a more detailed and informative solution
set.

Typically in PRAs associated with nuclear power facilities the
consequences of a release are modeled only over the time frame of the
accident. The principal transport route recognized as applicable in nuclear
power plant PRAs is the atmospheric pathway. This study was
commissioned to evaluate the risk from the silos over a five year time
frame. The extent of transport of radioactive contaminants in the
environment over a time span of five years can be significant. The region in
the vicinity of the silo structures located on the FMPC site is a small creek
which is frequently at saturated conditions (flowing water) during parts of
the year, which can add significantly to the water transport routes (both in
surface and ground water). Additionally the ground in this region is of
variable slope. This results in an increase in the potential for transport by
the erosion and runoff processes. The surface vegetation growth in this
area is primarily composed of grasses. This open field situation tends to
increase the transport of surface contamination via the atmospheric
resuspension process. The details concerning the transport of radioactive
material in the environment are more complex and less understood than
the considerations in a typical PRA.

22
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Pathway Anpalysis And Dose Assessment

The pathway analysis is inherently linked to the transport processes.
The additional considerations and calculations involve specifically those
routes through which radionuclides can result in the dose of humans. The
transport processes of most interest are those which lead to radionuclides
entering the food chain, being available for inhalation, or are present on
surfaces and contained in materials, buildings, and other places which can
lead to external doses. The foodchain is primarily affected when
radionuclides are present in vegetation, water, and livestock. The
inhalation route is determined by airborne contaminants either as a result
of the initial release or from the resuspension of contaminated dust. The
residues of the various transport mechanisms result in the contamination

of buildings, the ground surface, plants, roadways, and even people from
the deposition processes, erosion, and surface water sources drying out.

Each of the possible pathways leading to the exposure (potential or
actual) must be evaluated in order to evaluate the consequences (in this
case the dose) and eventually the risk. Detailed pathway analysis
techniques and models have been established and were evaluated using the
same PRA techniques as described for the transport processes. The
solutions of the pathway models resulted in a quantity that is represented
using a column matrix or column vector. This approach permits the
additional information to be taken into account in the risk estimates and
still assumes the models are linearly related. The complexity associated
with using nonlinear models for either the pathways or the transport
processes is beyond the scope of this project. Assuming these processes are
linear naturally induces a measure of uncertainty. The uncertainty
analysis will consider this fact in the calculations of the confidence levels
associated with the final risk estimates.

1.6 Risk Char -

After completion of the transport and pathway probabilities, the final
step in the risk assessment is performed. This step involves the
-quantification of the consequences. The consequences are based on the dose
received by a member of the public or a member of the workforce on site.
The dose alone can be evaluated with respect to any and all applicable
standards or in terms of the expected non-stochastic effects (short term or
immediate). Another method for evaluating the consequences is in terms
of the stochastic effects (long term cancer incidence) associated with
exposure to low doses of radiation. These effects are much more difficult to
quantify due to the nature of the effect of radiation on the human body and
due to the inherent uncertainties involved with the dose analysis. The
currently accepted risk estimates associated with exposure to radiation are
represented as a risk of developing a fatal cancer in an individuals lifetime
as a result of receiving a unit quantity of dose (from all sources). This unit
is typically taken as the rem or sievert. A seivert is a unit of absorbed dose
equivalent and is equal to 100 rems.
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The risk estimate used for this study was 2 x 104 per rem
(ICRP,1988). Which implies that an individual who receives one rem of
dose from all sources of radiation has a 2 in 10,000 chance of developing a
fatal cancer in his or her lifetime. The BEIR V results have also been
reviewed and considered in the characterization of the risk associated with
the exposure to radioactive material in the environment. BEIR V results
were not used directly in this study due primarily to the continuing debate
concerning the appropriate use and applicability of those results. It is
estimated that the risk may increase by a factor of 3 to 5 when using the
BEIR V results. The difficulty associated with this type of risk estimate is
that there is no consideration of the time frame of the exposure or the long
term responce of a population to the latent effects of the initial exposure ie
the individual in question may have genetic predisposition to or a tolerance
for developing a cancer.

The approach taken in this study was to use the previously accepted
(prior to BEIR V) risk estimates as the basis of comparison for the final risk
resulting from the hypothetical failure of the silos and from the continuous
release of radon gas. These comparisons will be presented in a number of
different formats to provide the greatest measure of confidence and
perspective given the nature of the situation being assessed. As an example
consider the risk of developing a fatal cancer after suffering a dose of one
rem, this can be compared to the expected or natural cancer incidence. The
natural or background cancer rate is on the order of 2.1 in 10 and this
indicates that two individuals out of every ten in the general public will
develop a fatal cancer whether exposed to radiation or not (AAA,1987?).

The purpose of this study is to evaluate and assess the risk from the
present condition of the silos. The time frame for this evaluation was taken
to be 5 years and the risks from continuous and hypothetical releases of
radioactive materials were considered. The risk coefficients desribed above
were used across the various stages of the exposure assessment and
therefore can be considered consistent. EPA slope factors were also
considered to provide an additional measure of the risks as well as the
variability and uncertainties. For these reasons the doses and risk
estimates made serve as a basis for comparison between the trivial and
significant contributors to the overall health impact.
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2.0 K-65 SILO FAILURE EVALUATION

This section discusses the silo structures in detail with primary
emphasis on the failure potential in both mode and probability. This section
of the report deals with the specific data used in this analysis and the
general form and condition of the silos. The silo failure evaluation section
is also intended to provide the models used and the assumptions employed
in the evaluation of the failure potential of the K-65 silos. The background
information, concerning the silos and use, is provided here for
completeness and continuity. Most of this information can be found in
other reports describing the silos. Some of these additional reports were
used as reference material in the preparation of this report and are cited in
the reference section.

This section is divided into six parts. The first and second parts
concern the silo structure with the first discussing the historical, present,
and future conditions and the second dealing with the potential failure
modes. Part three considers the failure initiators and part four provides
the specific failure sequences analyzed. The radionuclide inventory or
source term is presented in the fifth section. Section six presents the
overall probability of failure and release including the release mechanisms
and magnitudes. The majority of the available data is discussed and
analyzed in this section. Some information dealing with the surrounding
area and population distributions will be presented in the next section
where the exposure assessment is considered. :

To determine the structural condition of the silos and the probability
of failure much of the analysis was dependent on the work of Camargo
Associates Limited and Bechtel National Incorporated, whose reports
addressed the structural integrity of the silos through both destructive and
non-destructive testing techniques (Camargo, 1986) and (Bechtel, 1990).
Additional data and information was supplied by WMCO and the U.S.
National Oceanic and Atmospheric Administration (NOAA).

The non-destructive testing results, conducted for Camargo, provides
the data that is used for the evaluation of the probability of dome failure due
to natural conditions. It is important to note that significant discrepancies
were found in these results. Test locations for the non-destructive testing
procedures do not correspond to initial design specifications. The validity of
this analysis is determined in part by the availability, quality, and accuracy
of the information supplied to the University of Cincinnati.



2.1 Silo Structure

The K-65 silos are essentially large concrete waste containers. The
design and use of these structures was for temporary storage of radium
bearing residues remaining from uranium ore processing. The waste
containment structures, silos 1 and 2, are located at the west side of the
FMPC site. These silos were constructed in 1952 and have been used since
then as storage facilities for the radium bearing residues from pitchblende
processing. The silos are cylindrical in construction with an internal
diameter of 80 feet. The corresponding cylindrical height of these silos is
approximately 27 feet. A concrete dome rises to just over 9 feet above the top
wall line; the thickness of the dome is 4 inches at the center and tapers to 8
inches at the wall/dome intersection.

R il Acti

By 1963 the exterior surface of the silos had suffered major
deterioration. Large areas of the concrete walls have degraded which has
lead to the exposure of the post-tensioning wires. Subsequently, patches of
the wires have become severely corroded and eventually broke. Repairs to
the damaged surface began in 1964, at which time a waterproof sealant was
applied to the external walls. In addition, an earthen embankment was
built to the top of the walls. This embankment was intended to provide an
external force to counteract the internal pressure applied to the wall from
the waste mass. In addition, the embankment was expected to
significantly reduce radon emission. The recommendations of subsequent
structural investigations, have resulted in the construction of a temporary
steel and wood dome, with a 20 foot radius, to be placed on top of the existing
domes. In addition, a neoprene membrane was applied over the outside of
the dome to minimize radon emanation and to prevent water seepage into
the silo dome cracks. Table 2.1 delineates the chronology of the
construction and use, the various modifications, and major studies made
on the silo structures.

Table 2.1 illustrates the various changes that have occurred to the
silo from the beginning of the construction to the present. The physical
processes acting on the silo have not remained constant over the life of the
structure due in part to these modifications and adjustments. The addition
of gunite to the exterior walls in 1963 and the earthen berm in 1964 Would
have considerably reduced the wear and tear on the silos. Since no
significant testing or analysis was performed during this time frame, in
order to quantitatively evaluate the structural integrity, the results of the
Camargo and Bechtel studies are assumed to apply to the overall life of the
silos. The total age of the silos is essentially 38 years, however, since the
silos were filled to capacity by 1958, the berm was added by 1964, and the
Camargo study was completed by 1986 another estimate of the age of the
structures for evaluating the probability of dome failure was taken to be 28
years. Both of these estimates of the life of the structure are considered in
the evaluation of the potential for failure due to natural processes.
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Table 2.1 K-65 Chronology Of Events
Milestone or Event

Date

1951 Construction begins

1952 Construction complete

1958 Silos filled to capacity

1963 Repairs made to the silos

1964 Earthen berm added

1979 Vents sealed

1983 Embankments enlarged

1985 Camargo non-destructive tests

1986 Protective covers added to center 20 ft.
1986 Waterproof membranes added to dome top
1987 Foam coating applied to domes

1989 DOE inspections

1989 Bechtel performs further analysis

nditi

A complete structural analysis of the K-65 silos was conducted,
under contract of the Westinghouse Material Company of Ohio, by
Camargo Associates, Limited (Cincinnati). The purpose of the analysis
was to determine the structural stability of the silos, and to identify any
potential structural problem that would require remedial action. The
conclusions of this study have a direct bearing upon this present analysis;
the non-destructive testing results will be used to quantify the possible
mechanisms of failure.

The major conclusions of the Camargo analysis are:

1. Major portions of the domes are capable of supporting their weight
plus a live load of 20 psf. The center portion of each dome is critical
for any loads. There is a general thinning of the concrete domes with
sharp undulations of the interior surface. Associated with the
thinned dome sections are large cracks; the interior surface exhibits
various stages of deterioration. The silo dome thickness and general
quality deteriorates progressively moving from the dome/wall

intersect to the dome top.

2. The walls are believed to be stable as the material and berm are
counteracting. The silo wall thickness, concrete quality and
remaining percentage of horizontal preload wires have deteriorated
progressively moving from wall top to bottom.
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3. The base slab (floor) was not fully 1nvest1gated due to the
embankment. The condition of the base slab is thought to be similar
to that of the walls.

4. The walls and the base slab are considered acceptable from a
structural standpoint; Camargo quotes a maximum life expectancy
of between 5 to 10 years. The domes were considered to be
structurally defective and were assessed to have no life expectancy in
1985.

Pulse-echo techniques were used to determine concrete quality. These
investigations were conducted by Muenow and Associates, Inc. on behalf of
Camargo.- This analysis is expected to provide quantitative results for:

1. Compressive stress of concrete
2. Thickness of dome and walls
3. Percentage of reinforcement remaining in dome and walls.

From this data, regions of substantial weakness can be identified.
Percentage loss in compressive strength, thickness and, reinforcement will
aid in substantiating failure probabilities. Initial conclusions from the
analysis show that there is considerable spalling of the interior surface of
the dome. There is no pattern to the thinning, however, there are
significantly large areas of spalled concrete. Figure 2.1 is a topographical
map of the dome surface of Silo 1; values of concrete quality are shown
relative to their position. As will be explained later, quality 1 is rated as
being good and increases to quality 4 which is questionable. The quality is
shown to deteriorate towards the center of the dome ‘where there are larger
areas of quality 4.

Considerable wall cracking and loss of post-tension wires is present
in both silos. Maximum reduction in wall thickness is approximately 2
inches, however, the vast majority varies between 0.05 to 1.0 inches. Figure
2.2 shows the variation of wall thickness with wall height. A maximum of
25% of the horizontal reinforcement steel has been lost in specific areas.
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. Figure 2.1:
Topographical Map of Concrete Quality
Dome: Silo 1
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There is a wide range of possible ways in which the silo structures
can fail. The results of a particular failure are also widely varied. For the
purposes of this PRA analysis the entire range of failures were grouped
into two specific categories: 1) those relating to the possibility of an acute
release of the radioactive waste material and 2) those failures leading to
long term or chronic releases of radioactive material and radon gas. By
grouping the potential failure modes into these categories the analysis was
performed with the ultimate consequences, and therefore risk, in mind.

Each failure mode is represented using an event tree to describe the
specific events that lead to the acute or chronic release sequences. The
event tree is a powerful tool for evaluating those sequences that represent
the greatest consequence and therefore the highest risk. These event trees
represent the possible sequences associated with the lowest, intermediate,
and highest magnitude tornado events. The specific nature of the sequence
initiators is discussed in the next section.

Failure M nsider

The modes of failure considered for this analysis cover two primary
initiators; 1) severe weather conditions (tornado) and 2) natural
degradation of the concrete structure due to long term weathering and
wear. A third failure initiator considered was seismic activity. The
responce of the silo structures to seismic events was evaluated using the
results of the finite element model by Camargo and Associates and the
results of a similar study by Bechtel. Analysis of these results found that
the structural responce of the silos to a seismic event would not lead to
failure. The two primary failure initiators considered represent the
greatest consequences (with respect to the release of the waste material) in
the event of failure. Relevant silo failure possibilities were developed and
qualified in the status report, (February, 1990). Of the three substructures
considered, (Wall, Floor slab, Dome), the silo domes present the highest
probability of immediate failure and the highest risk related consequence.

The wall and floor failure consequences, when compared to that for
the dome, do not contribute significantly to risk. The potential for failure of
the wall to impact on the dome was considered to be significant and was
therefore modeled and analyzed. The wall was divided into two
components for evaluation. The division was made with respect to the area
balanced by the waste mass and burm, the lower wall, and the region with
only the burm acting on the wall, the upper wall structure. Information
regarding the temporary dome structure is not available on which to
evaluate a basic event contributor.

ot
0
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Acute Fajlures

The acute failures are regarded as those failures which result in
structural damage coupled with a short term high magnitude release
mechanism. The short term release mechanism is based on the
assumption that WMCO will take immediate corrective or remedial action

in the event of an acute failure. The high magnitude relates to the quantity
of radon-222 released or the total amount of residue material removed.

Acute failures include structural failures that can result in large
quantities of radon gas, residue material, and leaching or washout of
residue material. The evaluation of this class of damage and release
modes forms the basis of the dose and exposure assessment. Models which
best represent the physical situation and take into account the
uncertainties in the composition and form of the residue material are
needed. The models used were based on the ability for high winds to
remove the waste material.

hroni ilur

The chronic failure modes consider the current situation where
radon gas, through the process of diffusion, is constantly being released.
Subtle changes in the silo structure may result in the increased release
rate of the radon gas and therefore must be considered and analyzed.

Damage classes corresponding to minor cracks in the wall and dome
are grouped in the chronic release mode due to the time frame under
which the radon-222 is released. Minor cracking may take days or even
months to develop to the point where increased emissions of radon would be
noticed. This time frame results in a release, transport, and exposure
associated with chronic failures. The bridge between the chronic and acute
cases was also determined by the availability for residue material to be
released coincident with the radon gas. The chronic modes are assumed to
release only the radon gas.

The analysis of the release and transport of the chronic emission of
radon gas was made using actual monitoring data and numerical
dispersion models. The details of this analysis is presented in the Exposure
And Dose Assessment Section.
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This section of the report considers specifically the failure initiators.
The potential for failure of the silos to contain the radium bearing waste
and the radon gas as originally intended can be addressed by assessing the
causes or events which initiate the failure of the structure. The potential
for failure is increased by a number of different factors. These include
events both internal and external to the structures themselves. The
internal events are simply those corresponding to the structural integrity of
the container to continue to support the static loads resulting from the
mass of the waste material.

The external events are considerably more difficult to quantify.
These include the action .of the natural environment on the structure, such
as freezing, thawing, and erosion. Additional natural external events are
not as evident or probable, these being seismic activities and severe
weather. Seismic activity sufficient to cause structural damage is
considered to be extremely remote (Camargo, 1986). The action of the wind,
either from strong uniform gusts or from tornado type cyclonic turbulence
is considerably more probable and devastating. This section of the risk
assessment deals with the natural internal failure initiators and the
natural external failure initiators namely tornados or severe weather.

ver her

This section addresses the external events of severe weather in the
form of tornado type cyclonic wind action. The data evaluation, analytical
methods, and the estimated probability of occurrence and associated impact
of this external event, on the silos, is presented here. Considerable data
was obtained from NOAA detailing the occurrence of severe weather
phenomena throughout the United States. For purposes of this study only
severe weather occurring in Ohio, Indiana, and Kentucky was initially
considered. The data evaluated covered a time frame from January 1916 to
April 1989. Some gaps in the quality and usefulness of the data existed and
therefore the probabilities used in the assessment were based on the data
which was the most complete and applicable.

Tornados are ranked first in number of deaths and second to tropical
storms in total dollar damage in the United States, when considering
atmospheric-related catastrophes (excluding air pollution). Since 1963 the
average annual dollar damage resulting from tornados is approximately
200 million (Dames, 1975). The cost damage potential of a single tornado as
in the Xenia, Ohio tornado of April 3, 1974 can nearly reach the 200 million
dollar figure. A series of funnel clouds were reported as recently as June of
1990. The storm system from which these tornados were spawned covered
nearly five counties in Ohio and Indiana. The damage resulting from
these tornados was estimated at or above the 20 million dollar figure
further indicating the damage potential and frequency of occurence. One
tornado was also reported to have touched down within a mile of the FMPC

-
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site. This most recent tornado occurence was added to this report for two
reasons: 1) to illustrate the frequency, destructive power, and the proximity
to the FMPC site and 2) to serve as a reminder that tornados are random
occurences of nature and that this single event will not significantly
influence the probability calculations or the estimates of risk that result.

A tornado striking one or both of the silos has a real potential for
significant damage as well as possible environmental consequences. This
risk assessment is centered around the probability and consequences of just
such an occurrence. To insure that a certain risk level is attained or
exceeded for the K-65 silos, a statistical description of the recurrence of a
given intensity of tornadic forces is desired. Since "direct” measurements
of tornadic occurrence and the associated forces are generally not possible,
it is important to critically -examine - the existing data- and related
meteorological information in order to understand the phenomena.

Statistical analyses are limited by the quality and quantity of the data.
The statistical approach used in this study incorporates the best data and
methods available at the time of the analysis. Only tornado incidents where
the location, time, date, path length and width, strength, and damage
estimates were used in the study. The data collected covered the three state
region of Ohio, Indiana, and Kentucky for the years from 1978 through
April 1989. Tornado reports based on sightings by members of the public
and generally not substantiated by radar or official observations were not
included in'the probability analysis due to uncertainties created as a result
of unknown bias. These types of biases in the state of Indiana's and
Kentucky's tornado reports resulted in the use of only the data from Ohio.

The intensity of a given tornado was found to be directly related to the
path width and the track length (Pearson, 1971). The potential for
destruction is directly proportional to the intensity. The length of time that
the tornado is in contact with the ground also has significant contribution
to the damage potential. The data used for this study included 117 tornados
in Ohio over approximately a 9 and 1/4 year period from January 1980
through April 1989. The tornados were ranked according to wind speeds,
intensity level, area covered, and damage. The Fujita intensity scale was
used to classify the tornados and is provided in Table 2.2. The classification
of the tornados for this study were taken from NOAA reports. This
information was compiled by National Weather Service stations throughout
Ohio, Indiana, and Kentucky.

Due to the requirements of this risk assessment, to evaluate the risk
from the K-65 silos, three related analyses are needed. The first is obviously
the probability of occurrence of a tornado, the second relates to the
characterization of the tornado, and the third is the evaluation of the
damage resulting from the atmospheric turbulence. The methodology and
results of the occurrence probability will be presented first followed by the
methodology used in estimating the damage or destructive potential which
will include a discussion on the characterization of the tornado event.
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The ranking of the tornados resulted in the tabulation of the
frequency of occurrence, of each tornado class, as well as the probability per
unit area and per year for a tornado of a given intensity. These results are
illustrated in Table 2.3. Further analysis of the data provided a
relationship between a given wind speed and the wind loading. The forces
resulting from a tornado are complex and extremely difficult to model.
Most of the available data has come from tests performed in wind tunnels.
The direct applicability of these results is not clearly known at this time.
General empirical equations have been developed from these tests and are
readily used in the nuclear power industry to evaluate the response of a
given structure to tornados.. The NRC Regulatory-Guide 1.76 delineates the
maximum wind speeds and pressures drops required- to be analyzed for
applicability to structural response.

Approach

It is realistic to consider tornados as random phenomena in nature
as are hurricanes, earthquakes and floods. Natural phenomena may be
described as either deterministic or probabilistic. The probabilistic
approach is by no means vague or unreliable. Probability, like other -
theories, should be viewed as a conceptual structure and its conclusions
rely on logic.

The overall approach applied to the quantification of the frequency of
a tornado and the effect of the phenomena on a specific structure was
broken into two types of analyses. The first used straight forward statistical
analysis of the total number of tornados, the area affected, and the time
frame covered. The second involved two separate probability distributions
in order to evaluate both the probability and the consequences of a single
tornado event at the FMPC site.

The first approach assumes that the distribution of tornado events in
time is random and that the distribution fits a Normal distribution. This
allows for the estimation of the mean and variance for the occurence of
tornado events per time, in a given area, and for a given intensity class.
The second analysis evaluates further the relationship between the
occurrence of a tornado and the effect the event will have on a given
structure.

This is accomplished by utilizing two coupled distributions. The first
distribution governs the discrete probability of a tornado event in time and
the second distribution approximates the continuous distribution of the
resulting wind velocities. The discrete distribution used is the Poisson and
the continuous approximation utilizes the Gaussian distribution. This
approach results in the estimation of a risk level associated with the
occurrence and effect of a single tornado event in the assessment period.
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The risk level is defined as the probability of at least one occurrence
during the life expectancy of the system considered. The risk analysis
consists of collecting data on tornados with their assigned intensity
classifications. A point process, Poisson, was used in modeling the tornado
occurrences, thus providing the relationship between the risk level and the
ratio of the return period to the life expectancy (5 years as defined in the
contract). The combination of results from a best-fit density function and a
best-fit point process yields the return period and thus tornado intensity
(wind velocity) for the specific loads identified as critical for the K-65 silos.

Density Function

Although a discrete intensity scale is used for tornado classification,
the wind speed will be the parameter ultimately used for the damage
potential on the silos. Therefore, a continuous rather than a discrete
density function will be used for the risk analysis. The mean wind speeds
will be used to describe each intensity class. The normal or Gaussian

distribution was selected to represent the tornado distribution. The X2 test
is used to compare the expected results with the data. The mean and
standard deviation are estimated using the maximum likelihood method
given by Equations 2.2 and 2.3.

f‘ﬁ =X =- (2.2)

i (2.3

where:

-
m = Mean value.

o = Standard deviation.
n = Number of elements in the sample.

xi = Wind speed (mph).
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The point process is based on the Poisson process which assumes the
rate of occurrence is constant and independent of time. Using the Poisson
process allows for the relationship between the risk level and the ratio of the
return period to life expectancy to be site independent.

In the Poisson process the density function for t, the time between
occurrences is given by Equation 2.4 (Dames, 1976).

fa(t) = p e (2.4)

and the distribution function of t is given by Equation 2.5 (Dames, 1976).

Fr(t) = 1- et . (25)

and the probability function for 'N' occurrences as a function of the rate of
occurrence M is given by Equation 2.6.

P(N = n/p,t) = %ﬁ (wt)®, n=0,1,2, .. (2.6)

where:
u = Rate of occurrence.
T = Life expectancy.
t = Time of interest. -
fr(t) = Probability density function.
F1(t) = Probability distribution function.
n = Number of elements in the sample.
P(N,t) = Probability of 'N' occurrences.

If the rate is assumed uniform inside the area, then the rate in a
smaller area can be obtained by reducing the rate by an areal ratio. For
example if 'a’ and 'A’' denote the reduced and original areas, respectively,
then the rate inside the smaller area 'a’ will be given by Equation 2.7.

h=ucd) @7

The probability mass function inside the 'a’ (in this analysis 'a’ represents
the area of influence for the silo structures) is then given by Equation 2.8.

P(N. = n'/ll. ’t) =g._%:j. (p"t)n ] n' = 0’ 1’ 2’ i (2.8)
n:
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The method of maximum likelihood is easily applied to the density
function where the only parameter, y, is given by Equation 2.9.

o __n
p'_n

Z & (2.9)
i=1

Tables 2.4 and 2.5 delineate the data and results of applying the
statistical analysis to the tornado data, while the risk factor, for the Poisson
process, can be represented by Equation 2.10.

r=1‘e-L"(x)aXT (210)

The reliability function, Lx(x), for wind speed x, is defined as the probability

of the wind speed being at least x and is obtained by numerical integration.
The risk factor is estimated assuming that there is a single tornado event
in the life of the facility.

Incarporating this assumption removes the conditional probability of
tornado occurrence from the calculations. In this way the damage
potential of the wind and pressure forces are presented in terms of a risk
estimate. The nature of risk estimates dictates that the basic constituents
of the probability and consequence calculations be clearly stated and
defined. When considering two different risk numbers a comparison can
only be made when the basic components are similar.

The calculations presented here form the basis of the final risk
estimates associated with the tornado as an initiator. The next step is to
evaluate and compare the consequences of a single tornado event. The
consequences associated with each phase of the study, such as the
estimation of the damage to the silo structure, the release of radon and
other radionuclides, and finally the environmental transport leading to
human exposure form the basis for overall risk comparisons. Finally the
consequences of concern for the overall study are the increases in cancer
fatalities (or incidence in the EPA methodology) associated with the
exposure to radioactive materials. In order to achieve a basis for
comparison the risk estimates provided in Column A of Table 2.5 are
presented. The risk factor for the single tornado event in the life of the
plant at first glance appear to overestimate the risk of silo failure as a
result of a tornado. The intent is to illustrate the significant probabilities
and risks associated with the relatively low wind speeds. The numbers
provide a comparison that would be less obvious when the probability of the
tornado occurring is factored in.
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The obvious comparison here is that the damage potential (risk
factor) is significant for average wind speeds on the order of 112 miles per
hour. The probability of this wind speed occurring is quite large at 25%.
The forces associated with this wind speed are 288 (psf) tension and
approximately 50 (psf) compression. These forces are considered (based on
the structural analysis) to be sufficient to fail the silo dome. Although these
forces are not the maximum values the damage to the silo is expected to be
such that a significant quantity of the radionuclide inventory could be
released. The risk (consequence of the tornado on the silo) associated with
the failure of the K-65 silos over the next five years is best represented by the
risk factors in column A of Table 2.5. The risk estimates provided in
column B of Table 2.5 are presented to approximate the total probability
(tornado frequency and damage potential) and are therefore form a basis of
risk comparison with the chronic or continuous release of radon. The
values in column B include the damage potential, for each intensity class,
and the probability of a tornado event in the five year assessment period.

The probabilities and risk factors presented in Table 2.5 were used to
evaluate the maximum damage potential and therefore the maximum
quantity of radioactive material that could be released to the environment.
The probabilities of silo dome failure, due to natural degradation, and of a
tornado occurring, per year and per square mile, were used in the final
risk estimates relating the total cancer fatalities or cancer incidence as a
result of human exposure to the radioactive material that hypothetically
could be released. These values are delineated in Table 2.6. The central
difference between the probabilities listed in Table 2.6. and those in Table
2.5 is that the net effect or consequence considered is different. The values
in Table 2.6 refer to the frequency of occurrence, of a tornado, and not to the
specific damage potential. The values in Table 2.6 were used in the overall
risk estimates in order to form a comparative basis of the consequences.
The inclusion of the specific damage potential would appear to
underestimate the risk from the silo contents on the public.

har izati f Effe

The characterization of the specific tornados of which data was
available is essentially dependent on the intensity factor and the recorded
wind speeds. The ideal characterization would provide pressure and
velocity distributions as a function of position, corresponding to the radius
of the tornado. This type of information is rarely available for actual
tornados. The next best method, therefore, is to assume some realistic
distributions based on the intensity factor, the area covered and the
resulting damage.

The forces on a structure resulting from a tornado are of two types: 1)
compressive forces and 2) tensile forces. These forces result from the high
tangential and translational wind speeds and the effects of large and rapid
pressure drops.

43

=

g 2-19



Table 2.6: Probabilities Associated With Natural
Degradation Of The K-65 Silos And Tornado Occurrence

Probability Of Failure Due To Natural Degradation

Silo 1 Silo 2
0.0362 0.0389 per year
0.18124 0.19459 over 5 years

Probability Of A Tornado Per Square Mile

per year over 5 years
1248E-4 6.24E-4

(1N
£
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The atmospheric pressure gradient at radius 'r' from the tornado

axis is given by the cyclostrophic wind equation, Equation 2.11, (Long, 1958),
and (Rotz, 1974). '

dP(r)/dr = pVir)/r (2.11)
where:

p = Mass density of air.
Vi(r) = Tangential wind velocity component.
Pa(r) = Pressure as a function of position.

r = Radius of the tornado measured by the wind
. velocity.

If the tangential velocity profile is assumed to be a Rankine vortex the
velocity can be represented as a function of position as provided by Equation
2.12.

(r/ Reg) Vi 0 <r<Rp)
Vi) =
(R / T) Vim (R ST < o) (2.12)

The f)ressure distribution as a function of position -is then
represented by Equation 2.13.

%(-p V2)(2-VEt2/R2)

0<r<
Osrshm)  o13)
Pa(r) =
%(-pvﬁo(R?n/V%t?) (Rp ST <o)
where:
Vm = Maximum tangential velocity.
Vir = Translational velocity of the storm front.
Rm =

Radius for the maximum tangential velocity.

2.21 43



LR 2

The maximum forces associated with the above described pressure
and velocity profiles can be obtained using the following empirical
correlations, Equation 2.14 for compression, and Equation 2.15 for tension.

P, = 0.5Cp Cs p Vuax (2.14)
P«0) = p Vi, (2.15)

where:
P¢ = Compression force (psf).

Pt = Tensile forces (psf).

Cp = Coefficient of lift and drag forces.

Cs = Coefficient for the shape of the structure.

Vmax, and Vom = Maximum wind speeds for the
rotational and translational components.

These equations are used for the roof portion of the silo structure for
both the compressive and tensile forces. The compressive forces are
primarily due to the lift and drag forces of the horizontal wind components.
The tensile forces are primarily due to the pressure drop associated with

" the storm and specifically the local depression in the vortex of the tornado

itself. These correlations relate the forces of the turbulence associated with
the tornado. These forces are then compared to the critical loadings of the
silos to determine the damage potential. The critical loads on the silo dome
are approximately 284 psf for the outer portions of the dome and
approximately 104 psf for the center portion (determined in the Camargo
study). Table 2.7 delineates the forces expected from the various classes of
tornados as related to the mean wind speeds. Several diagrams have been
added to further clarify the results of the force calculations on the silos.
The first diagram, Figure 2.3. illustrates regions of influence. The farther
away the region of high tangential wind speeds and high pressure drops
(funnel cloud) is from the silo structure the less damage that will be
sustained. The area or radius of influence also changes with the tornado
intensity. The next diagram, Figure 2.4. illustrates the damage type. The
results of these calculations when compared to the critical loading on the
dome show that a tornado of at least an F1 intensity or higher has the
potential for failing the silo dome structure.

In the event that the dome fails, as a result of the forces from the
wind and estimated pressure drop, the next major consideration is the
extent of damage to the structure. In this analysis the extent of damage
was postulated to range from simple cracking in the event of low wind
speeds and a moderate pressure drop to the extreme case where the dome
is completely removed, as a result of the maximum wind and pressure
forces. The forces exerted in this extreme case would be well in excess of
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the critical buckling load by a factor of 2, for the outer portion of the dome,
and more than a factor of 4, for the inner 20 foot section. This range of
damage complicates the analysis of the release term as well as the overall
risks. In order to facilitate the risk estimates the maximum damage and
therefore the maximum source term released were used in the exposure
assessment portion of this study. In this regard no credit was taken for
parts of the silo structure falling in and thereby reducing total quantity of
residues available for dispersion by the wind.

As a final point, all of the various probability calculations are
presented in Table 2.8. This format enables the reader to view all the
various calculations simultaneously. What is not able to be conveyed in a
tabular format is the specific meaning for each calculation or probability
estimate. This understanding or appreciation is hopefully gained through
both the supporting text and the reader's own experiences. Probabilities
and especially risks are difficult to grasp in terms of everyday experiences.
Ehe more complicated the probability the more difficult the understanding

ecomes.

It is important to note that the foam and the protective cover to the
center portion of the dome were not considered to add strength to the dome
structure. The additional weight these modifications impose on the dome
were considered to be a detriment and tend to increase the potential for
failure. For this reason the loss of the dome during a tornado event was
evaluated using only the results of the force and wind loadings as applied to
the silo modeled in the Camargo report. The estimated extent of damage in
the event of a tornado discussed in this section was taken as a maximum
and is not intended to reflect, precisely, the wide range of possibilities for
the manner in which the dome structure may fail. The exposure
assessment can then be broken down into fewer parts and the complexities
associated with what failure mode to use is reduced to using those
estimates which reflect the maximum source term and therefore the
maximum consequences.
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Table 2.8: Summary Of Probabilities Associated
With The K-65 Silos

L Silo Dome Failure Probability
A. Probability Of Failure Due To Natural Degradation

Silo 1 Silo 2
0.0362 0.0389 per year

0.18124 0.19459 over 5 years

B. Probability Of Failure Due To Natural Degradation
Including Tornado As An External Event

Silo1 Silo 2 Average
0.0365 0.0339 0.0362 - per year
0.1825 0.1695 0.176 over 5 years

II. Tornado Occurrence Probability (per Square Mile)

a.) Total per year over 5 years
1186 E-3 1.248E-4 624E-4

b.) Probability as a function of intensity level

Intensity
0 191E-6 9.55E-6
F1 365E-5 183E-4
F2 283E-5 142E-4
F3 195E-5 975E-5
F4 122E-5 6.10E-5
F5 263E-5 1.32E-4

At
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Table 2.8: Summary Of Probabilities Associated
With The K-65 Silos (continued)

IIL Probability And Risk From Wind Speed Given A Single
Tornado Event In A Five Year Period

wind velocity probability risk factor
(x, mph) Lx)=1-F(x) r (X)
112 25E-1 " 37E-1
135 1.75E-2 413E-2
185 3.34E-3 5.78E-4
230 278E-6 " 6.13E-6
290 243E-7 735E-8
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Seismic Activi

There are few places on earth where there is no threat from seismic
events. The Ohio valley where the FMPC site is located is at risk from
seismic activity. In fact some of the worst earthquakes ever recorded in the
United States occurred in the midwest region. Seismic activity as far south
as Tennessee, as far north as Minnesota, and as far east as South Carolina
have had their effects recorded in the Ohio valley. The return period for
earthquakes in this region however is very long indicating that the
frequency of occurrance is relatively small.

The details associated with seismic activity in the region affecting the
FMPC site have been included in this final report for completeness. The
net effect of an earthquake -on the K-65 silos is not expected to exceed the
critical loads for the dome, floor, and wall portions structure. This
conclusion was reached as a direct result of the Camargo study. Due to
discrepencies in the Camargo and Bechtel reports the addition of seismic
information and a discussion of the structural responce was included.

Inf ion On Seismic Activi

On December 16, 1811, the largest magnitude earthquake man has
recorded on the North American continent occurred at New Madrid,
Missouri. The intensity of this earthquake was estimated at XII on the
Modified Mercalli (MM) scale. Two additional earthquakes of equal
intensity occurred on January 23, 1812 and February 7, 1812. These
earthquakes were felt over an area of 2,000,000 square miles. Three
hundred fifty miles to the northeast, in the vicinity of Cincinnati, these
seismic events were felt as intensity VI - VII (MM) (USGS circular 1066,
1990). '

Earthquakes occurring within the Eastern United States are of
tectonic origin in that they are associated with large-scale strains in the
crust of the earth as opposed to earthquakes associated with volcanic
sources. Tectonic earthquakes are generally assumed to be caused by
slippage along planes of weakness (faults) that separate the large plates
forming the earth's crust. The concept of plate tectonics is straight
forward: the crust of the earth can be divided into six major plates and
many smaller ones that move relative to each other at velocities ranging
from a few centimeters per year up to 20 or more (Burchfiel, 1983). Recent
estimates of the configuration of the tectonic plates places the Cincinnati
area well within what is called the North American Plate.

The FMPC site is located in a seismically quiet region that has
experienced ground motion principally due to events in adjacent regions.
The low level of seismic activity has resulted in the lack of interest in
regional seismicity and the rather small number of instrument recorded
events. Most of the knowledge on the seismicity comes from reports in
newspapers and other references over the past 200 years.
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The great quakes of 1811-1812 located at New Madrid that resulted in
ground motions equivalent to Intensity levels of VI or VII are the highest
recorded accelerations in the vicinity of what is now the FMPC site. The
closest reported earthquakes to the FMPC site occurred near Maysville,
Kentucky, approximately 64 miles southeast, and at Cincinnati, Ohio,
approximately 10 miles to the southwest. Four earthquakes have been
reported in the Maysville area, two Intensity V (MM) events in 1928, one
Intensity V in 1933, and one Intensity III event in 1937. Additionally there
were approximately 37 earthquakes in the Anna, Ohio area, which is
located 75 miles north of the FMPC site. The majority (24) of these 37 events
occurred in the 12 year period from 1928 to 1939 with two of the events
measuring Intensity VII, one event of Intensity VII - VIII, one at VI+,
and one at VI. The epicenters for these events range from 50 to 90 miles
from the FMPC site. ‘

The nature of the movement of the tectonic plates determines the
effect on structures at the surface. The location of the epicenter and the
ground characteristics between this point and the location at the surface
being investigated determines a structures responce to the event. There are
three important parameters in assessing an earthquake: 1) the duration of
the earthquake, 2) the velocity of the surface movement, and 3) the rate of
change of the surface velocity (ground acceleration).

The basis of seismology is the observation and analysis of elastic
energy as it propagates itself through the earth. When mechanical energy
is released in a homogeneous earth, it is propagated outward in waves
whose fronts are spherical and whose mechanism is alternating
compression and rarefaction of the material through they pass. These
waves, called P waves, are physically analogous to the the sound waves that
spread outward from an explosion in air or water. The P wave travels at a
rate of about 5.6 kilometers per second. It is the first wave to reach the
surface. A longitudinal wave, the P wave tends to create a "push-pull”
effect on rock particles as it passes.

Since the earth is in general not homogeneous, and though
imperfectly elastic, it has rigidity or shear strength that is absent in air or
water. This rigidity results in a second type of wave to propagate the
energy. This second wave action causes the material (through which the
wave passes) to move transversely to the direction of the wave motion.
These shear waves, called S waves, travel through the solid material at a
velocity a little more than half of that of the P waves. The S wave causes the
earth to move at a right angle to the direction of the wave.

In addition to the S and P waves, generally referred to as body waves,
there is also energy propagation along the surface and at interfaces. At the
earth-air interface, waves similar to surface waves in water are
propagated. These interface waves are called Rayleigh waves and they
cause, as in water, circular vertical motion of the material through which
they pass, in the plane containing their direction of propagation. In solid
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material, surface waves like S waves also occur, and the material moves
horizontally in a plane transverse to the direction of motion of the wave.
These waves are called Love waves (L. waves). These waves are usually
only distinguishable at great distances. L waves cause the swaying of tall
buildings and slight wave motions in bodies of water at graet distances
from the epicenter.

Examination of the potential sources of seismic activity and the
ground characteristics between the sources and the FMPC area provides a
conceptual picture of the wave modes and the eventual responce structures
on the surface may have. This type of examination was performed by Soil
and Material Engineers Incorporated in order to estimate the duration of a
hypothetical seismic event, the surface velocity, and the peak ground
accelerations. This information- collectively provided. the basis for the
seismic simulation runs for the FMPC site with respect to the K-65 silos.

ismic Simulation Of K- il

An earthquake analysis was performed on both of the K-65 silos as
part of the Camargo study. Some of the details of this seismic simulation
study are presented to provide a basis for final risk evaluations. The
following assumptions were made and were considered conservative: 1)
the K-65 material stored in the tanks is a solid and is assumed to add mass
but not stiffness, 2) damping was neglected, 3) the tank was assumed to be a
homogeneous isotropic uncracked concrete structure, 4) all connections
between the walls and base slab, and the walls and the dome have enough
tendons to cause the system to act as a unit through the majority of the
earthquake, and 5) all stresses reported herein are a result of the
earthquake and do not account for the compression stresses existing in the
‘tank due to post tensioning and induced by other loads such as self weight,
etc.

The peak ground acceleration was taken to be 0.05 g and the ground
motion duration was 10.0 seconds. An earthquake with these properties
(Intensity V) represents a 90% probability of occurence within a fifty year
period. The results of this seismic analysis for the dome showed that the
hoop stresses on both silos was in the range of 97/-95 to 111/-118 psi for the
the top of the tank walls. The corresponding longitudinal stresses were on
the order of 78/-53 (psi) for silo 2 and 138/0 (psi) for silo 1. The stresses at the
middle of the dome were negligible due to the structure's flexibility and
therefore does not resist the movement of the earthquake.

The results as indicated in the Camargo report indicate that the
dome structures of either silo are not expected to fail as a result of an
earthquake in this region. With respect to the K-65 risk assessment the
seismic responce of the silo domes resulting in structural failure was taken
as having a low probability and therefore more time and resources were
expended in determining the probability and effect of tornado events on the
silos.
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The seismic information was included for completeness and to
provide an additional level of the potential release mechanisms.
Eventhough the risk of a seismic event. causing failure of the domes is
small the potential release scenario was none the less evaluated. Due to the
nature of the forces acting on the structure in the event of failure of the
dome structure there is little chance for release of any of the waste material
other than the radon in the head volume of the silo. Should this event occur
the conservative assumption of a crack forming that will release the entire
head space contents within a one hour period was made. In this situation
the consequences of an earthquake capable of failing the dome are
essentially the same as that of a low intensity tornado or the natural
degradation failure mechanisms. The exposure and dose assessment for
this  event were considered in what is termed the acute A2 release
discussed in a later section.
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Long Term Weathering And Wear

Due to the age and structural condition of the silos, it is possible that
the integrity may be significantly reduced. to an extent that the silos may no
longer be capable of fulfilling their design intent of waste containment.
These deterioration processes are time dependent and are continuous.
There are no evaluations of quality assurance during construction and
hence it is not known if the design specifications were met. Thus the
assumption has to be made that at time the time of construction the silo
domes were in a structurally perfect condition.

Using the above assumptions and the results of the Non-Destructive
Tests (NDT) performed by Muenow and Associates a model was developed
to provide numerical values of the condition of the silos. The model
developed was used to establish a quantitative basis for estimating the
probability of dome failure due to natural degradation. A time dependent
degradation rate has been developed assuming an exponential distribution
function. This assumption is more accurate than using a linear model and
hence compensates for the uncertainty involved with the structural stability
at time of construction. Additionally, all modifications made after the
Camargo report were not included in the degradation probability model.
There is insufficient data available on the relationship between the current
and future degradation rates. The models were developed considering only
dead loads on the silo structure. Live loads such as wind, rain, or other
external forces were not taken into account in the natural degradation
process. '

There are three primary events which are considered as the
contributors to the loss of silo integrity by natural processes; these are:

1. Weathering and Wear.
2. Mesh Support Loss.
3. Concrete Quality.

These basic events are evaluated below, and produce an annual
contribution to the probability of dome failure. The contribution of each of
these basic events is depicted graphically in Figure 2.5. This figure shows
the generalized fault tree representing the possible failure modes
associated with the dome unit on the K-65 silos. The basic events are coded
by letter and numeric formats. The letter represents the level at which the
basic event acts and the numeral indicates the relative number of events on
that specific level. The final letter in the designation indicates the type of
event. The first basic event discussed is designated as C5e, where the 'C’
indicates the third level of the tree, the '5' represents the fifth event, and 'e'
designates the event as a basic event.
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The potential failure of this waste management system can be
measured in terms of the potential release of radioactive material to the
environment. The purpose of the study, thus far, has been to identify these
mechanisms and to provide estimates of the probability of occurrence.

The first step in this analysis has been to identify the hazardous
conditions inherent within the present system which have a potential for
failure. The information derived from this initial analysis can be used as a
basis for the fault tree analysis. The fault trees allows the system failures
to be quantified in terms of effects and probability of occurrence.

The methodology used in this fault tree analysis involves postulation
of a release of waste material and then following the series of component
failures which must have occurred to cause the release. Each failure in the
fault tree is ultimately traced to one or more initial occurrences. These
initial occurrences are collectively defined as the basic events. The
principal difficulty in developing a fault tree is the determination of the
basic events and their relationship to one another.

The evaluation of potential failure of the silos was made by dividing
the overall structure into three independent substructures:

1. Dome
2. Walls
3. Floor Slab.

Due to the variance of forces upon the wall, and due to the different
potential failure scenarios, the wall was further divided into two regions.
The Upper Wall refers to the vertical structure between the dome base and
the internal waste level. The Lower Wall extends from the waste line to the
juncture with the floor.

Fault trees have been constructed for each substructure individually;
once again the wall section consists of two independent trees for the lower
and upper structures. Inter-relationships and inter-dependencies of the
substructures have been fully utilized such that a complete silo failure
scenario may be evaluated. Although the structure itself is simple,
additional complications exist due to the presence of a berm, the addition of
a secondary dome, and the lack of evaluated data concerning the condition
of the silo floor. Additionally the berm presents a force upon the wall; to a
large extent this compressive force is mitigated by the tensile force applied
to the wall by the internal wall mass. However, the upper section of the
wall has only the compressive stress of the berm as it is above the waste
mass. The strength of the dome cannot be assumed to be constant across
the dome radius. The center section is believed to be much more susceptible
to failure. Hence, failure of the dome is expected to occur in the center 20
feet. :

2007
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Fault Tree Development
Fault tree analysis is a technique by which many events that interact
to produce other events can be related using simple logical relationships

(AND, OR); these relationships permit a methodical building of a structure
that represents the system, Figure 2.6.

To construct a complete fault tree which best represents the system, it
is necessary to fully comprehend the system in question and its function.
In addition, all possible events which may cause a potential failure of the
system must be fully analysed. Once the system function is fully defined, a
fault tree may be constructed.

In fault tree construction, the system failure event that is to be
studied is called the top event. Successive subordinate (subsystem) failure
events which may contribute to the occurrence of the top event are then
identified and linked to the top event by a series of logical functions. The
subordinate events are subsequently broken down to their logical
contributors, and in this manner, a fault tree is constructed.

When a contributing event can no longer be further divided, the
corresponding branch is terminated with a basic event. Basic events are
statistically independent unless they are common cause failures. -Such
failures are those that arise from a common initiating event. Such is the
case for the external events (seismic activity and tornados) which are to
used in this analysis. : .

Once the tree structure has been established, the subsequent analysis
comprises of two forms: 1) Qualitative Analysis reduces the tree to its
logically equivalent form in terms of the combinations of basic events which
will lead to the top event. This will reduce to a minimal cut set of failure
modes for the tree; this is accomplished using Boolean Algebra and
2)Quantitative Analysis of the fault tree consists of transforming the
established logical structure into an equivalent probability form, and hence
numerically calculating the probability of occurrence of the top event from
the probability of occurrence of the basic events.

Once the fault trees for each of the systems have been constructed,
the trees are integrated into the one unifying structure; the event tree. The
event tree is defined by its initiator (seismic, tornado, natural degradation,
etc.). Figures 2.7 and 2.7a show the fault trees representing the possible
failure modes associated with the wall. The basic events are coded by letter
and numerical formats. The letter represents the level at which the basic
event acts and the numeral indicates the relative number of events on that
specific level. The final letter in the designation indicates the type of event.
The first basic event discussed is designated as C5e, where the 'C' indicates
the third level of the tree, the '5' represents the fifth event, and ‘e’
designates the event as a basic event.
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Fault Tree For Dome Failures
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Figure 2.6:

Fault Tree Symbols
(NUREG - 0460)

Basic Event - A basic initiating event requiring
no further action.

Intermediate Event - A fault event that occurs
because of one or more
events acting through logic

gates
AND - Output fault occurs if all the input faults
occur
OR- Output fault occurs if at least one of the
input faults occur.
TRANSFER - Tree is further developed at another
point; avoids repitition.
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Evaluation Methodology

The results of structural testing provide a numerical or qualitative
statement of the present day condition of the silo structure. These values
need to be statistically evaluated to predict the probability of failure per
year. The methodology proposed to accomplish this is to fit an exponential
function to the two points of evaluation; 1952, time of construction, and 1986,
Camargo non-destructive testing. The function is then extrapolated to the
present day, 1990, to produce a predictive condition value. At this time a
second exponential function is used to evaluate the fraction of functional
time remaining to failure; from this algorithm, an annual probability of
failure is calculated. The process of evaluation is described below.

The first step in the process.is the evaluation of the Quality
Statements (QS) resulting from the non-destructive tests. The QS are
presented in terms of either numerical values, such as remaining dome
thickness, or in terms of a condition statement, for example as a concrete
quality factor for the dome; there are four condition statements assigned to
the concrete quality as shown below.

Condition Quality
1 SOLID
2 AVERAGE
3 MODERATE -
4 QUESTIONABLE

An averaged Quality Statement for the entire sub-structure may be
evaluated using all the testing locations. This averaged value may be
weighted in terms of regions or by critical locations.

The second step is to assess the time dependency of the degradation
process. This is accomplished by examining the three principal time
periods of concern. The principal times are presented below.

1952 time of construction to t=0 (years)
1986 time at testing tndt t=34
1990 time of evaluation teval t=38

The assumption is made that at the time of construction (to) the

condition statement is at the design specification and that there is no loss
of integrity. Thus for the case of concrete quality, the condition at time=0,
Qo is equal to 1 (solid).
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The exponential degradation rate, A, is thus given by Equation 2.16:

mQ&di}'

e Q0
tndt (2.16)

Note: For some cases condition statements are not given; such is the case
for concrete thickness, here design values are taken from the original
drawings and the 1986 thicknesses are taken from the test results.

The third step in the evaluation process consists of the estimation of
the time frame when failure is imminent. This is accomplished by
assessing the point at which the integrity of the structure has been
compromised. This critical statement Qcrit is taken to be the threshold for

structural integrity, and marks the value at which failure is imminent.
Using the exponential degradation rate it is possible to predict the time
taken to reach the critical threshold. This time frame is denoted by Tecrit

and is given by Equation 2.17.

i (St
Terit = —_-;Q&— 2.17)

The final step is to determine the maximum time before complete
structural integrity is lost. The relationship between the time remaining
and the time already past provides the basis for estimating the probability
per year of further degradation. The fraction of functional time remaining
( Terit - teval ) can be incorporated into an exponential density function to

yield the probability of failure, p. The functional time remaining is shown
graphically by Figure 2.8. The probability of failure per year, J, is given by:

’ln (1 - 39111)‘
T .
ol ey
(2.18)

Note: teval =38 years.

(o}
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Fail E Probabilities: DOME _
The fault tree for dome failure show five basic events:

1) Basic Event C5e: Weathering and Wear

2) Basic Event D9e: Mesh Support Loss

3) Basic Event D8e: Concrete Degradation

4) Basic Event D6e: Spalling Around Accessways
5) Basic Event D8e: Cracking Around Accessways

The énnual probability of occurrence of these basic events are evaluated
using the methodology described above.

Basic Even 1 Ev ion ing : r -

Determination of the wear of the concrete domes can be
accomplished using the test values of concrete thickness. The Buckling
Stability of the dome is the capacity of the dome to withstand the
compressive loads without bending out of plane. Due to the general
thinning of the dome, the structural integrity has been significantly
reduced. The critical buckling evaluated by Camargo Associates is 284
PSF; this is valid for thickness of 3 inches and greater. A critical buckling
of 104 PSF was similarly evaluated for concrete thickness of 2 inches.

Using a linear relationship of critical buckling as a function of
concrete thickness an extrapolated value -of 1.42 inches is found to
correspond to a buckling value of 0 PSF. Thus, 1.42 in presents the lower
threshold of integrity; hence any thinning resulting in a dome thickness of
1.42 in, or less, will lead to a breach of the concrete dome integrity.

The values used to compute the magnitude of thinning were taken
from the testing regions towards the top of the dome (dome center) as these
regions have been deemed by Camargo Associates to be critical. Areas
close to the dome/wall intersection were not incorporated into the analysis
as the exact testing coordinates were not provided, since it was impractical
to attempt to evaluate the value of the original design specification
thickness. In addition, the outer regions of the domes are not considered as
critical as the inner 20-30 ft. radius, thus to provide an accurate evaluation
these values were omitted.

From the remaining test locations, average of the remaining
concrete thickness for both silos were evaluated.



Table 2.9: Results Of Concrete Thinning Data
Average Thickness  Tested (1986) Average

Reduction (in) Thickness (in)
SILo1 0.916 3.084
SIL.O 2 0.909 3.091

Using the exponential thinning rate (Equation 2.16) of the concrete
with time, and assuming that at time T=0 that the thickness was 4 inches
(design specification), the thinning rates were calculated to be:

Table 2.10: Exponential Thinning Rates
(in/year)

SILO 1 Al = 7.649E-3
SILO2 = A2 = 7.584E-3

Using these thinning rates it is possible, still using a exponential
reduction rate, to predict the time taken for the dome thickness to reduce to
the 1.42 in threshold, (Equation 2.17).

Table 2.11: Time to Reach Critical Thickness (years)

SILO 1 T1 = 13540
SILO 2 T2 = 136.59

Using the fraction of functional time remaining, the annual
probability of failure, U, can be evaluated by Equation 2.18:

Table 2.12: Probability Per Year Of Weathering and Wear
Basic Event C5e
SILO 1 M =8.669 E-3
SILO 2 H2 =8.579E-3
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Basic Event D9e: Evaluation of Mesh S ;

Pulse echo techniques were employed by Muenow and Associates to
determine the quality of the reinforcement steel remaining in the domes.
These tests indicate the bonding condition of the concrete to the wire mesh
supports. The ability of the steel mesh to provide strength to the concrete
structure relates directly to the integrity of the dome. The testing logistics
used provided 252 values of steel quality at the 126 test locations. Muenow
assigned a Quality Statement to each result. The quality statements are
qualitative in nature and are assigned based on the general conditions
inferred from the observations at a particular location.

It is important to note that the quality assignments are assigned in
such a way that the better the quality the lower the number assigned. A
number assignment of '1' indicates that the material is considered to be in
the same condition as original design. Similarly, an assignment of quality
number '4' indicates that all structural integrity has been lost. This
formalism is illustrated through example in the following quality
statements.

1 ment 1
No pulse reflections noted at reinforcement steel locations and
noted depths - indicating no corrosion nor nonbonding of the steel to
cement matrix.

Quality Statement 2 : ‘
Minor and undefined pulse echo reflections noted at reinforcement
steel locations and noted depths - indicating some possible slight
corrosion and/or lack of bond between steel and cement matrix.

Quality Statement 3
Defined pulse echo reflections noted at reinforcement locations and
noted depths - indicating a strong possibility of corrosion product in
conjunction with a non-bond condition between steel and cement

matrix.
The 252 test results were analysed and weighted to provide a Quality
Statement of the reinforced steel for the whole dome. This derived quality
statement for the whole dome results in a quasi-continuous distribution.
The results of the analysis for this derived quantity in connection to the
steel reinforcement is depicted in Table 2.13.
Table 2.13: Reinforced Steel Quality For Entire Dome

SILO1 Qi = 1.746

SILO2 Q2 = 1663
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It is apparent from the results in Table 2.13 that the overall quality of
the steel reinforcement within the dome is less than original design, but
still sufficient to provide some support. Continued degradation of the steel
supports will eventually result in the total loss of support and this would be
designated by a quality number of ‘4'.

The exponential decay rate of the steel quality can be determined
(equation 2.16); assuming at time t=0 the quality was 1 over the entire dome.

Table 2.14: Exponential Steel Quality Decay Rates

(yearl)
SILO1 .Kl = 0.0164
SILO 2 A2 = 0.0150

To determine a threshold at which the dome integrity has been
compromised, a new Quality Statement 4 is introduced. It is assumed that
a Quality Statement of 4 infers that total corrosion has been reached and the
reinforcement steel can no longer support the dome.

The time taken to reach the critical condition 4 can be evaluated
using the exponential decay rates A1 and A2 and Equation 2.17.

Table 2.15: Time to Reach Critical Quality 4

(years)
SILO1 = 8453
SILO2 = 9242

Using the exponential probability density function with the fraction of
time to critical quality, the probability of failure due to mesh support loss
can be calculated.

Table 2.16: Probability Per Year Of Mesh Support Loss

Basic Event C9e.
SILO 1 H1 = 0.0157
SILO 2 M2 = 0.0139
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Evaluation of the extent of concrete degradation can be achieved
using the Concrete Quality Statement assigned by Muenow and Associates.
Cracking is an inherent property of most concrete structures; the extent of
such cracking would indicate the ability of the concrete to provide a
compressive strength. Four Statements were specified, each of which are
listed below. Each statement is set by assigning a threshold for the pulse
velocity and a correlated compressive strength for a typical concrete mix.

Concrete Quality Statement
1._SOLID

No Cracks; line of deterioration well defined indicating flat inside
surfaces. Pulse velocity in the range of 14,000 ft./sec; compressive strength
greater than 4,000 PSI.

2, AVERAGE

Surface cracking; line of deterioration less well defined indicating an
undulating inside surface. Pulse velocity range of 13,000 to 14,000 ft./sec;
3250 to 4,000 PSI compressive strength.

3. MODERATE -

Surface Cracks and full depth cracks; local sharp undulations
indicating areas of deterioration. Pulse velocity range of 12,000 to 13,000
ft./sec; 3250 to 2750 PSI compressive strength.

4. _QUESTIONABLE

Surface cracks, full depth cracks and some crack plane offset;
grouped or large areas of sharp undulation indicating areas of
deterioration. Pulse velocity in the range of less than 12,000 ft./sec; less
than 2750 PSI compressive strength.

. The methodology to be employed for this analysis has been outlined in

the previous two evaluations. The results for each step are shown below.
Concrete Quality 5 is the assumed lower threshold for structural integrity

Table 2.17: Concrete Quality For Entire Dome
SILO1 @ = 2.000

SILO2 Q2= 1.948
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Table 2.18: Exponential Degradation Rate For
Concrete Quality per Year

SILO1 A1 = 0.0204

SILO2 X2 = 00196

Table 219 Time to Reach Critical Quality 5

(Years)
SILO1 = 78.89
SILO2 = 8211

Table 2.20: Probability Per Year Of Concrete Degradation
Basic Event D8e.
SILO1 1 = 0.0173
SILO 2 pz = 0.0163
Basic Events D : D ion Around A

The design specifications show four accessways on the surface of
each dome, these inlets were the main input lines for the raffinate into the
silos. Information is not available to quantify the degradation around the
areas of the inlets. However, the discontinuities of the dome surface at
these points will create nodes of high stress and hence there is a possibility
that such stresses may lead to failure. To account for this increase in
failure probability, these basic events have been assigned the same
probability as those for concrete degradation (D8e) and weathering and
wear (C5e). Hence;

72




200

D6e = Cbe
D7e = D8e

It is important to note that the evaluations for weathering and wear
and for concrete degradation were performed for the whole dome surface
and, in comparison, the areas affected by the degradation around the
accessways is minimal. The evaluation of an accessway failure is
considered to be a product evaluation, as the logic gate is AND; thus the
discrepancy in area is accounted for.

Table 2.21: Probability Per Year Of Accessway Failure
Spalling Around Accessways
Basic Event D6e.
SILO 1 W = 8.669 E-3
SILO2 p2 =8579 E-3

Table 2.22: Cracking Around Accessways

Basic Event D7e.
SILO 1 p1 =0.0173
SILO 2 M2 = 0.0163

The probabilities for each of the basic events as well as for the total
dome failure are listed in summary format in Table 2.23. This table
provides for quick reference of all the probabilities associated with the loss
of integrity of the silo structure.

Failure Event Pr ilities: L

The basic events for wall failure are somewhat more complex when
compared to those of the dome. Firstly, the wall has been sub-divided for
this analysis into two sectors, the upper and lower walls. The field data has
been divided so that both wall sectors will have independent basic events.
In addition, the data available for the walls is not as complete as that for the
domes. The fault tree for wall failure is given by Figures 2.7. and 2.7a.

[ TN
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Fault Tree For Lower Wall Failure

Figure 2.7a
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The lower wall failures, as presented in Figure 2.7a, are sub-divided
into two potential modes. The structural integrity is governed by the three
properties of the concrete, mesh support, weathering and wear (thickness),
and concrete degradation (quality, hence compressive strength). The
second mode relates to the rigidity of the wall about the floor slab joint.

Lower wall failure is incorporated into the fault tree for total wall
failure. Here again, upper wall structural integrity is used to evaluate
natural degradation failures.

The fault trees for wall failure show seven basic events:

1) Basic Event Ule: Mesh Support Loss, Upper Wall
2) Basic Event Lle: Mesh Support Loss, Lower Wall

3) Basic Event U2e: Weathering &Wear, Upper Wall
4) Basic Event L2e: Weathering &Wear, Lower Wall

5) Basic Event U3e: Concrete Degradation, Upper Wall
6) Basic Event L3e: Concrete Degradation, Lower Wall

7) Basic Event L4e: Wall Footing Condition

The annual probability of occurrence of these basic events are evaluated
using the methodology described- above.
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The wall thickness component.of the non-destructive testing,
(Camargo, 1986), is used to evaluate the probability of failure due to
weathering and wear. The original minimum 28 day compressive strength
for the silo walls was 4,500 PSI, (design specification). Correlating the
original wall thickness to the design minimum compressive strength
allows the extrapolation of a new, present day, compressive strength
corresponding to the present day wall thickness. The variation in
compressive strength with wall thickness is illustrated in Figure 2.9.

Figure. 2.9
Variation of Compressive Strength
With Wall Thickness
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From the above graph, the extrapolated thickness at which the
compressive strength is zero, occurs at 6.696 inches. This value is taken to
be the lower threshold of integrity. The average wall thicknesses computed
along each test line for both the lower and upper portions of the wall are:
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: Table 2.24
Average Wall Thlcknws (in)
SO 1
Upper Wall _ 79375
Lower Wall 74824
SILO 2
UpperWall - 7.8780
Lower Wall 7.1382

Using the established methodology to evaluate the exponential
degradation rate:

Table 2.25.
Exponential Degradation Rate

SILO 1
(years-l)

Upper A =2.8663 E-3
Lower A =4.6029 E-3
SILO 2
(years1)

Upper A=3.0876 E-3
Lower A =5.9880 E-3



Time to critical thickness, 6.696 in, as expressed by equation 2.2:

Table. 2.26
Time to Reach Critical Thickness
SO 1
(years)

Upper . Terit = 93.34
Lower Terit = 58.12

SILO 2
(years)

Upper Terit = 86.65
Lower Terit = 44.68

Finally, the annual probability can be evaluated; Equation 2.3:

Table 227
Probability Per Year of Wall
Weathering and Wear

Basic Event U2e & 1.2e

SILO 1
(years'1)

Upper p=0.01376

Lower u = 0.02792
SILO 2
(years1)

Upper p=0.01519
Lower p = 0.05001
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The extent of internal discontinuities within the concrete matrix can
indicate the quality of the structural concrete. These discontinuities
include cracks, voids, and the lack of consolidation associated with the
reinforcement steel system. Quantification of such discontinuities can be
achieved using pulse velocity tests. These values of pulse velocity can be
correlated to the uniformity of concrete and thus the in situ compressive
strength.

The Camargo test results give values of the pulse velocities at all test
locations, these values are converted into compressive strengths for both the
upper and lower sections of the walls. The threshold at which the walls
may fail is not supplied by Camargo, however, destructive tests conducted
on Silo 4 by Bechtel (Bechtel, 1990) show that the remaining strength ranged
from 1,463 to 2,531 PSI. This represents an average loss of 60%. In
conclusion, the allowable stress quoted by Bechtel is 658 PSI; this value is
used as the lower threshold for this evaluation. Using the exponential
methodology, the pertainent results are tabulated in Table 2.28.

Basi n Lle : Evaluation of Wir hL

Under a critical load combination, the largest stress upon the wires
is 114,000 PSI. This case would depict the removal of the earthen berm with
the contents of the silos intact. The design stress in the wires. was 100,000
PSI and the above value of 114,000 PSI would be above the design limits.

) The maximum compressive stress can be assumed to be at locations
where wire loss is highest. The highest wire loss reported by Camargo to be
25%. Assuming that at 25% the wire loss is critical, the probability of
failure due to wire loss can be calculated. Using the exponential
methodology, the pertainent results are tabulated in Table 2.29.

. ."-(' [
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Table. 2.28.

Evaluation of Failure Probability due to
Concrete Degradation

Basic Events U3e & L3e.

SILO 1 SILO 2
Upper Lower Upper Lower
Ave. Pulse Velocity 14,153 13,332 13,946 13,142
(ft/sec)
Correlated 4,000 3250 3,500 3,250
Comp. Strength (PSD)
Degradation Rate 34642E-3 9.5712E-3 | 7.3916 E-3 9.5712 E-3
A (yearl)
Time to Critical - 555.00 200.88 260.12 200.86 .
Strength (years)
Probability of Failure| 1.866 E-3 55184 E-3 | 41560 E-3  5.518 E-3
U (yearl)
S0
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Table. 2.29.
Evaluation of Failure Probability due to
Wire Mesh Loss
Basic Events Ule & Lle.
SILO 1 SILO 2
Upper Lower Upper Lower
Ave. Wire Loss 0.5208 4.1319 0.4861 6.3141

(%)

| Degradation Rate . 0.01919 0.04172 - 0.02121 0.05423
A (yearl)

Time to Crtical 167.74 77.15 151.76 59.39
Strength (years)

Probability of Failure | 6.760E-3  0.01785 7584 E-3 0.0269
H (year1)

81
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Basic E Lde : Wall Footing Conditi

The condition of the joint between the wall and the floor slab may be
important from a structural buckling standpoint. Moments which would
effect the joint may only be applicable during a seismic applied force. Since
such a scenario is regarded as not being an applicable threat, (Camargo,
1986), this basic event is not a primary concern. However, since all inter-
dependencies are to be covered, the probability of failure due to wall footing

condition are evaluated below.

Condition Statements:

1. GOOD

2. AVERAGE

3. MODERATE

4, QUESTIONABLE
5. THRESHOLD

1986 condition, averaged over all test locations, (Camargo,1986)

Silo 1 2.1667
Silo 2 2.3958

Initial Condition (1952): 1.000

Table 2.30.
Evaluation of Failure Probabilities
Due to Wall Footing Condition
Basic Event 14e.

SILO 1
Degradation Rate 0.0227
A (yearl) :
Critical Condition 70.90
(years)
Probability of Failure 0.0164
(yearl)

SILO 2
0.0257

62.62

0.0131
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The probabilities for each of the seven basic events of wall failure are
presented in table 2.23.. The final annual probability of wall failures are
also given for both silo 1 and 2.

Table 2.31.
Basic Event Contributors

And Total Wall Failure Probability

Designator Event SILO1 SILO 2
Description

Mesh Support Loss:

Ule Upper Wall 6.760 E-3 7.584 E-3

Lle Lower Wall 0.01785 0.0269
Weathering and Wear:

U2e Upper Wall 0.01376 0.01519

L2e Lower Wall 0.02792 0.05001
Concrete Degradation:

U3e Upper Wall 1.866 E-3 4.1560 E-3

L3e Lower Wall 55184 E-3 5.51180 E-3
Wall Footing Condition

L4de Lower Wall 0.0164 0.0131
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2.4 Radionuclide 1ng§gm

The consequence of primary concern that are associated with the
failure of the K-65 silos is the exposure of the public to radioactivie material.
This consequence is dependent on the total radionuclide inventory or source
term contained in the silos. The data obtained from WMCO and others
clearly shows that the total quantity of radium, thorium, uranium, and
radon is not precisely known. The uncertainty associated with the radium
inventory also affects the acute and chronic releases of radon and
consequently affects the total quantity of the radon daughters. The
environmental source term is directly related to the consequences
associated with the failure of silos. The failure mode dictates the quantity
of material released and the time frame of that release. The objective of this
section is to provide the assumptions, results, and analysis for the
estimates of the radionuclide inventory and the magnitude of that release.

Estim Of Th rce Term

The total mass of the waste material contained in the K-65 silos is
estimated to be on the order of 19,400,000 pounds (NLO, 1968). The total
amount of radionuclides residing in this mass is expected to be less than
0.12% by weight. The bulk majority of the waste mass is in the form of
silicates (SiOg4), trace metals, various oxides, and residual water. The

waste mass is assumed to be approximately 30 to 40 percent water with
varying layers that range from hard crust like material to that of a powdery
consistency. . : :

A number of estimates and analyses have been conducted in order to
arrive at the source term (Battell, 1988);(AS1,1990). To date the most
prominent data reflects a total quantity of radium (for both silos) to be in the
range of 2,300 to 4,600 curies. The best estimate within this range is on the
order of 3,300 curies (=375 nCi/gr). This value was used in this risk
assessment to determine the transport and dose resulting from acute
releases. The 3,300 Ci estimate also more closely approximates the quantity
of radium that would be necessary to yield nearly 600 Ci of radon annually
from the silos. )

The quantity of radium in the silos has a direct bearing on the
production rate of radon (since radium-226 is the parent radionuclide of
radon-222). The amount of radium determines in part the quantity of radon
available for release. This is true in either a catastrophic failure mode or
for the chronic release (radon gas leaking through the pores and cracks of
the silo). Radium-226 is called the parent nuclide of radon-222 due to the
fact that each time an atom of radium-226 decays an atom of radon-222 is
formed. The natural decay mode for radium-226 is the emission of an
alpha particle and a gamma ray. The remaining nuclide is then radon-
222. The production rate of radon-222 is simply the decay rate of radium-
226. There is considerable uncertainty in the radon emission rate from the
silos as well as the total inventory available in the free space of the dome,
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which is primarily due to two problems: 1) the precise quantity of radium-
226 is not available and 2) the rate of diffusion of the radon gas is a
nonlinear process and is not known precisely.

The range of values for the inventory of radon in the upper head
region range from 30 to 50 curies. The total quantity of radon released per
year is also uncertain and values in the range of 167 to over 1100 curies per
year have been reported. Estimates of the total source term of radon
released each year were made by calculating a range of values that would
effectively yield the average values that are measuerd and by use of the
AIRDOS-EPA computer code. As a result of this analysis the acute release
of radon was taken to be 50 curies and the chronic annual release was
calculated (using best estimates and data that had more than one source)
to be 650 curies. - In both instances the values were taken as the maximum
substantiated values in the given ranges.

Uranium in the silos is estimated (based on records and
measurements) to be on the order of 0.41 nCi/gram for the 238 and 234
isotopes, with only 0.02 nCi/gram for uranium-235. This ratio reflects the
natural isotopic abundance of uranium-235 and is within the range of the
most recent analysis of the residue material (ASI,1990). The estimates of
uranium content were taken from early analytical data from NLO. The
total quantity of uranium in the silos is taken to be approximately 11,200 kg.
This corresponds to a total of approximately 7 curies and is assumed to be
distributed uniformly throughout the solid waste material.

The existence of uranium in the silos has been known for some time,
but the existence of thorium-230 in the silo residues was not expected. The
concentration of thorium within the solid residues has been measured and
was found to be both a significant quantity as well as non-uniformly mixed.
Three samples analyzed showed a range of concentration of approximately
77 nCi/gram to 483 nCi/gram in the solid waste matrix, for a total inventory
of approximately 1,810 Curies. This variation in concentration indicates
the non-uniformity and leads to considerable uncertainty in the actual
quantity of thorium-230.

The concentration of other radionuclides such as polonium,
bismuth, and lead is also expected to be quite large. These elements
although significant in their own right were found to be of minimal
consequence when compared to the chronic radon dose or the dose
resulting from the acute release of residue material. The radon dose
calculations were made using dose conversion factors which incorporated
the radon decay products. The dose conversion factor assumes a 70%
secular equilibrium with the short lived radon progeny. This equlibrium
value is probably high by a factor of 1.75. The release rate and the
mechanisms affecting the release of radon from the silo can significantly
affect the buildup of the daughters. Also the decay products are heavy
charged particles and are susceptiple to deposition processes more strongly
than is radon. Radon that is free of any decay products would require
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approximately one hour to reach 60% equilibrium. The time lag would
occur simultaneously with the transport of the radon gas. Even with
relatively calm winds the dispersion of radon can be over a distance of more
than 1500 meters. The transport calculations in the following section show
that the dilution of the radon is much more significant than the buildup of
the daughter products.

Calculations of long term exposure from the daughter products from
ingestion routes are essentially insignificant compared to the direct and
inhalation doses from the residue materials. The significant exposure
path for the radon daughters is through inhalation and this was taken into
account in the dose conversion factor. '

The concentration of each of the radionuclides and their isotopes as
determined above have a large degree of inherent uncertainty. This stems
in part from the possibility that the residue material was processed to some
degree. Processing to remove a particular chemical species will disrupt
any possibility that there is secular equilibrium. The assumption of
natural abundance for the isotopic concentration of uranium-235 is in part
a result of the uncertainty in the actual concentrations. There was no way
to determine whether there had been any processing to remove uranium-
235 therefore the assumption was made to use the natural abundance.

- Small increases in the concentration of uranium-234 significantly

increases the dose to an exposed individual. ASVIT samples indicate that
the concentrations of the uranium isotopes follows the natural abundance
within a reasonable range.. -



25 Fail S And Rel Potential

Event trees were developed for each phase of the study in order to
evaluate, in a stepwise fashion, the contribution of a series of events with
the final risk estimates. The preceeding discussion centered on specific
failure initiators and the methodology for evaluating those initiators. In
addition a discussion detailing the forces associated with the wind from a
tornado event was presented. The next phase of the study deals with the
linking of the failure initiators with the potential for release of the residue
material. Figures 2.10 through 2.12 illustrate the comprehensive event
trees concerning specifically the failure potential of the silos.

Figures 2.10 through 2.12 illustrate the various events which lead to
silo failure as a result of each of the initiators considered. In each of the
figures the basic components of the silo structure are examined with
attention focused on the potential for release of residue material. In the
case of the tree describing the loss of silo integrity due to a tornado event the
silo components are the upper wall, the dome, and the lower wall. The
basis for using these three elements as the top events in this tree stem from
the interaction of the tornado event on the silo. The upper wall is expected
to have stresses imposed on the it from the high winds, the pressure
gradient, and the stress induced by the other structural units. Similarly
the dome structure is acted upon by the wind and the upper and lower wall
units. The order of the units is intended to aid in the elimination of
unnecessary events and sequences.

In each scenario, which is described by an event sequence, the
outcome is expected to be either the integrity of the silo is maintained or is
lost. The tree depicted in Figure 2.12 has three 'failure' sequences and one
'success’ sequence. The successful sequence is labeled by 'TT' whic
represents the probability that a tornado event will occur in any given year
in any given square mile. This sequence is considered a success due. to
each outcome, the upper and lower wall units as well as the dome, results
in a success. If the tornado event occurs and the result is no loss of
structural integrity to the silo then the sequence is a success. The other
three sequences in this tree each yield a failure by resulting in at least one
path through which radioactive residue material can escape. The upper
wall failure will lead to a path for radon in the head space, the lower wall
failure may lead to a path via leaching, and the loss of the dome is a direct
path for both the radon and the residue material. This tree is not used for
determining the actual release but only the probability of structural failure
as a result of the tornado initiator. The numbers contained in the right
hand column indicate the respective sequence probability. The very small
probabilities for the sequences involving the upper and lower wall failures
indicate the extreme forces necessary to fail these units. The tornado
events required in order to have any possibility of failing these
substructures are in the range of the F4 to F5 intensity class.. The
probability of the maximum wind speed coincident with the required
tornado event is used to represent the probability of the structural failure.
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Figure 2.12: Loss Of Integrity
From Natural Forces (Tornado)
Event Tree For K-65 Storage Silos

'Il;fi;?aﬁ: Upper Wall Dome Lower Wall | Damage Seq.
s Uw D LW Class Prob.
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The silo failure trees were then linked to event trees which describe
the mechanisms and scenarios leading to a release of the waste material.
These trees, called release trees, are illustrated in Figures 2.13 and 2.14.
Figure 2.13 illustrates the release events associated with the seismic and
degradation initiators while Figure 2.14 depicts the release sequences
resulting from the tornado event. For the purposes of this study the tornado
release event tree has been developed to illustrate the wide range of possible
release scenarios.

The five events after the initiator are intended to describe the specific
scenarios which are a result of the action of tornadic winds on the silo
structures. The first event indicates the potential for only minor dome
cracks which would release radon. This first event is considered to be
associated with a tornado of intensity F1. The second event describes the
potential for partial dome collapse as a result of an F2 or F3 tornado. The
fourth and fifth events relate to complete dome collapse and removal that
are expected to be associated with the F4 and F5 tornado intensities. The
classification of tornado intensity with specific structural responce was
determined as a result of the forces associated with the tornado events and
the critical loading estimated for the silo structure. The last event is
intended to represent the force needed to remove the residue material. The
last event is a link to the next stage of the overall analysis which is the
transport and exposure assessment. This tree then presents the probability
of release after a silo failure. These numbers are listed in the right hand

- column of Figure 2.14.

The final stage was to incorporate event trees describing the
connection or series of events related to the transport and ultimate
exposure of the waste material in the environment. An example of this
tree, for the 'Tornado Event', is illustrated in Figure 2.15. This tree is
intended to serve as the bridge between the failure and the ultimate
exposure scenario. The events in this tree describe the manner in which
the wind forces act on the residue material. There are pressure gradients,
translational winds, and finally the ability for the wind to carry residue
particulates for both short and long distances. The probability estimates
listed in this figure illustrate the extreme uncertainties and variabilities in
the transport and exposure calculations. The exact nature of the wind
action on the residue material is not clearly understood. The possibility
exists that the residue material is extremely rigid and unyielding to the
eroding and lifting capabilities of the wind.

The completion of similar trees for the seismic and degradation
scenarios was eliminated due to the trivial results that would have been
obtained. The overall connection between the phases of the study (and the
various event trees) is depicted in Figure 2.16. This figure illustrates the
functions used to pass both probabilities and consequences from one phase
of the study to another.
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Figure 2.16: Event Tree Relationships Applied In The
K-65 Risk Assessment

Event Trees For
The Silo Structure

Event Trees For
Release Modes

Event Trees Faor
Environmental Transport
Processes

Consequence Evaluation:
Pathway Analysis
Dose Assessment

results = probabilities
—-> failure (given an event initiator)
column vector - f(d,p)

results = column vectors
total probability - flc,t,p)

’ results = column vectors
total probability - f{x,c,t,p)

__’ results = column vectors
total probability - KD,t,p)

R = [fail] x [release] x [transprt] x {consequences}
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The potential (probability following silo failure) for release of
radionuclides to the environment is related to the physical characteristics
of the waste material or residue as well as the probability of the silo failure
mechanism. The probability of the failure mechanism was covered in

‘Section 2.3. Since the total radionuclide inventory accounts for less than 1%

of the total mass, the residue material must act as a carrier for the
radioactive particulates. This fact then reduces the problem of determining
the source term to one of estimating (qualitatively and/or quantitatively) the
total mass of residue material that can be released from the silo structure.
In the case of atmospheric release the dispersion of material will be
determined in part by the chemical form, the particle size, and the scale of
turbulence in the environment. The waste material was assumed to be
composed predominantly of silicates (sand). The exact water content
although not known precisely has been estimated to be approximately 30 to
40 percent which may significantly influence the impact of the wind forces
on the material. The water is expected to act as a binder for the solid
material thus reducing the tendency for distribution, however
measurements and sampling data indicate that the upper layers of the
residue material may be dry and available for dispersion.

The failure modes addressed for applicability to the release terms
are: 1) catastrophic failure leading to an acute release of radon, radium,
uranium, and thorium, 2) partial failure resulting in an acute release of
radon, and 3) chronic failure resulting in the continuous emission of radon
gas. ' .

Magnitude of Maximum Release

The model used for evaluating the source term for an acute release
where only radon-222 is released is straight forward and consists primarily
of the estimation of the total quantity of radon gas in the upper free space of
the silo. The model for the source term associated with an acute release
where a significant amount of the residues are exposed to the atmosphere
is much more difficult to evaluate. As previously stated the damage to the
silo in the event of a tornado was assumed to be the complete removal of the
dome structure. The total surface area of the residue material is then left
exposed to the full force of the wind and pressure forces.

The total force associated with a tornado event is composed of two
parts: 1) the lift and drag forces resulting from the high tangential and
translational wind velocities, and 2) the uplifting forces associated with the
pressure drop accompanying the funnel cloud. These forces can in many
cases act in concert for the total load on an object. As a result of these two
force components the dome structure is assumed to be completely removed
and the residue material is allowed to experience the full effect of the wind
and pressure forces. In order to estimate the effect of the wind on the
removal of radioactive contaminants both the density of the residue (which
is approximately 100 pounds per cubic foot) and the maximum compressive
and tensile forces (which are greater than 390 pounds per square foot each)
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were considered. The radionuclides were assumed to be distributed
homogeneously throughout the residue material and the problem of
evaluating the source term released is reduced to evaluating the total
quantity of residue material removed and dispersed.

The depth of residue material available for redistribution can be
estimated by using the ratio of the pressures to the dead weight of the
material. In this case the force of the wind would be capable of lifting an
amount of residue material approximately 4 feet in depth and 1 foot wide.
The weight of 4 cubic feet of residue material would therefore be about 400
pounds. Even though the wind forces are acting over an surface area the
net effect of the continued wind and pressure forces for the duration of the
tornado event is assumed to be capable of lifting nearly the 4 foot depth of
material. The calculations made for this study assumed, for convenience,
a total depth of 1 meter (which is approximately 3.28 feet) over the area of a
single silo. Since the silo being approximately 80 feet across (24.5 meters)
the total volume of residue material that would be potentially removed is

calculated to be approximately 468 m3. The density of the residue material

is calcualted to be nearly 100 lbs/ft3. At this density and with the
concentration of radium of 375 nCi/g the total quantity of radium released is
approximately 281 Ci. This is in turn approximately 8.5% of the total
radium inventory.

This analysis method provides the total quantity of residue material
released and therefore the magnitude of the radioactive source term, which
has already been divided by radionuclide and by the specific isotope. The
next phase of the analysis requires an estimate of the quantity of the
released material which is airborne and the amount which is deposited on
the ground near the failed silo. The best estimates on the fraction of the
airborne and ground deposited material come from measurements of
particle sizes and distributions resulting from explosions of sand, gravel,
and other similarly related materials (LLNL,1985). In most cases the
distribution of size is taken to follow a 90-9-1% ratio. The net result is that
90% of the released material is deposited within close proximity to the
structure (within 300 feet of the point of release), then about 9% is deposited
within about 2500 feet, and the remaining 1% is available for atmospheric
dispersion. Figure 2.17 depicts the magnitude of the release and the
distribution in the environment. Table 2.32 provides the magnitude and
type of the source term as a function of the failure mode.

The mechanism of dispersing the residue material as a result of
tornadic winds may be different from that of sand and other materials that
are in explosions. The problem however was futher evaluated by
investigating photographs of damage done to a variety of structures by
tornado events. Additionally calculations using the wind speeds and
pressure drops were used to estimate the net impact on the residue
material. Figures 2.18 through 2.20 help to illustrate the effect of the wind
on the silo material. Figure 2.18 shows the possibility of the wind as an
erosion force on the residues. This possibility assumes that the residue
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material is loose and mostly sand like. Figures 2.19 and 2.20 are intended
to illustrate the possible trajectories and paths that particles will follow
when caught in tornadic winds. These diagrams calculations and related
references were used to substantiate both the maximum residue material
that could be removed and the distribution in the environment.

This analysis was arrived using conservative assumptions and
estimates whenever possible. The conservative factors are intended to
overestimate the source term and the eventual distribution in order that the
maximum effects (risks) can characterized. The release and transport
trees were then developed to add perspective to the overall risk assessment.

The source term estimates were based on both analytical work and
references to other reports and documents concerning the K-65 silos. The
calculations made include estimates of the volume of free space available in
the dome portion of the silos and the approximation of the radon release
rate using analytical and calculational techniques as well as data from
actual measurements to relate the production and loss terms. This work
was employed in an attempt to consolidate and compare the various
estimates of the quantity of radium in the silos. The uncertainty of the
radium concentration is considered a dominant limitation of the risk
assessment.
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3.0 EXPOSURE AND DOSE ASSESSMENT

This section details the environmental transport, exposure scenarios, and
the pathway analysis associated with the dose assessment. Essentially this
section of the report considers everything after silo failure and the
corresponding release has occurred. The extent of the dispersion or
distribution of radionuclides in the atmosphere, soil, and water were
analyzed. Exposure scenarios were postulated and evaluated and the dose
was assessed. This section of the report also covers the probability aspects
of the release sequences and the environmental transport as described in
Section 2.6.

vi ntal Tr. nsi

Atmospheric, terrestrial and biotic, and water routes constitute the
available pathways through which radioactive material released to the
environment can ultimately result in the exposure of the public. The
terrestrial and biotic pathways included ingestion of contaminated food as
well as the redistribution of the contaminants through processing and
shipment. The water routes include surface water and groundwater
sources which are typically used for everything from irrigation to drinking
water. The atmospheric routes eventually impact the water and biotic
pathways through precipitation, winds, and fallout.

The pathways considered in this study were limited to the
atmospheric routes. The limitation of transport paths was due to the time’
frame of the risk assessment (5 years) and to the nature of the release and
transport mechanisms following silo failure. The dominent exposure
pathway for the radionuclides of concern was found to be inhalation.

Environmental Transport Mgdgls

The transport of the radioactive material in the environment is a
component of the pathway analysis and exposure assessment phase. The
details of the analysis, including the basic assumptions, will be discussed
in the this section with the results (concentrations in the air and on the
ground) will be presented in Section 3.

There are essentially two types of release modes considered in this
analysis. These are considered as acute and chronic. This terminology
refers primarily to the time frame of the release, but also to the type of
failure mechanism and therefore the magnitude of the release. The
chronic refers to the continuous release of radon gas, while the acute
release can be either entirely radon or a combination of radon, radium,
thorium, and uranium. With this convention there are a total of three
exposure assessments and three source terms to be evaluated for transport
in the environment.
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The principal transport mechanism is atmospheric dispersion,
including the ground deposition processes. Other potential transport
mechanisms generally require time frames longer than a few years to
assess completely. For this reason only the atmospheric transport of
contaminants released from the silos was considered.

Atmospheric transport of contaminants is typically modeled using a
standard Gaussian plume dispersion equation, which relates the
distribution of contaminants in the atmosphere to the point of release by
means of a dispersion coefficient. The dispersion coefficients are developed
as a result of empirical correlations from experimental data. The best
known model is that which is contained in the AIRDOS-EPA computer
code. This code utilizes the Pasquill-Gifford parameter system for
evaluating the dispersion coefficients.

The Gaussian plume model is applicable, in many situations, to both
short term (one hour) and continuous releases and transport times. The
data base containing the wind direction, velocity, and stability frequencies
can be manipulated to approximate both of these release modes. For the
purposes of this study the acute releases were assumed to occur over a one
hour period, while the chronic release was taken as an average release rate
over a one year period. The principal difference between the two modes, in
terms of atmospheric transport, is the number of sectors over which the
concentration calculations are made. The one hour release (acute cases)
uses only one 22.5 degree sector at 100% frequency (for wind direction,

- velocity, and stability class) for the concentration calculations. The chronic

case on the other hand utilizes the time averaged wind frequency data
which is accumulated over an entire year along with all 16 of the 22.5
degree sectors. Additional changes to the input data, to account for the
short term release, concern the magnitude of the source provided to the
code and the buildup time (for ingrowth from radioactive decay as well as
scavaging and deposition processes). Depending on the specific scenario
considered there are a number of options, in the input data file, that can be
selected in order that the computer results best reflect the physical
scenario.

The following assumptions were used to evaluate the concentrations
of radionuclides in the atmosphere resulting from a hypothetical tornado
event and from the continuous release of radon from the K-65 silos. As
mentioned previously two types of release modes were considered: 1) acute
release of radon gas and residue material, due to severe weather (tornado)
and 2) the chronic release of radon gas due to the current situation of the
silos. The time frames considered for the AIRDOS-EPA computer runs
were taken to be 1) one hour release for the acute case and 2) one year
average for the continuous case.

The continuous case was evaluated using the FMPC site specific
meteorological data which includes time averaged wind speeds, stability
classes, and wind directions. This method corresponds to the typical use of
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the ATRDOS code with the exception that the doses were evaluated with both
the radionuclide data base contained in the code and by using the more
recent values for dose conversion factors (DCF's) as provided by Kocher. The
radionuclide data base for the DCFs contained in the AIRDOS code does not
contain the most recent and accepted values. The AIRDOS code was,
therefore, essentially used to evaluate the concentrations of the four
radionuclide species in the atmosphere. The dose estimates provided by the
AIRDOS code were useful as a reference values or for a magnitude
comparison for each of the exposure scenarios considered.

The acute release was modeled using a single sector and a single
stability class (F) for the most conservative estimate. The direction
considered depended on the population distribution and the predominant
wind direction. The population center used in this analysis was considered
to be within 14 kilometers, of the release point, and is located essentially
East Northeast of the site. This would correspond to a principal wind
direction from the West Southwest. Using the AIRDOS code in this
manner is consistent with the basic theory of the Gaussian diffusion model
since the time scale considered must be compatible with the turbulent
diffusion mechanism. The translational wind speeds typically
accompanying the tornado event are in the range of 30 to 70 mph and
thereby providing the wind force sufficient to disperse particulates as far
away as 30 miles in a one hour period.

The concentration in the atmosphere for both the population dose and
the nearest resident were estimated using the sector average option in the
AIRDOS code. Although this results in a lower dose the sector average
concentration is the more realistic value and is comparable with fenceline
radon measurements at the FMPC site. Table 3.0 lists several of the key
input parameters and the values used in the assessment. The annual
rainfall and the heights of the plume and lid were taken to provide a better
represention of a storm situation for the single sector one hour release
model used.
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Table 3.0: AIRDOS-EPA Input Data

Parameter . Input Value

source height (PH) 27 feet
(accounting for silo wall height)
plume height (PR) ' 50 meters
(high winds)

lid height (LID) 1000 meters
annual rain (RR) | 100 inches
average temperature (TA) 2853 K
scavenging coefficient (SC) 1E-5
deposition velocity (VD) 1.8E-3

The source terms used depended on the specific release mode
considered. The concentration in the atmosphere is linearly related to the

source term, therefore to evaluate the concentrations resulting from

greater source terms new concentrations are simple multiples of the
previous concentrations. The results of the atmospheric transport models
are listed in Table 3.1-and are discussed in Section 3.1.
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3.9 Probability Of Rel \nd T I

The consideration of the probability of a given release and the
probability of the resulting dispersion in-the environment was considered
extensively for the final PRA of the K-65 silos. The transport models and
analysis discussed previously were utilized in the evaluation of this phase
of the study. A significant amount of energy and time were expended in
determining the methodology and the analysis techniques for evaluating
this portion of the PRA.

Several diagrams have been added to this section to provide some
insight to the type of modeling undertaken. The first three illustrations,
Figures 3.1 through 3.3 indicate the potential for variation in radon
concentration from atmospheric dispersion as-a result of building wakes.
The uncertainty in the coefficients for building wakes and the inherent
limitations in the AIRDOS and GENII dispersion models restricted the
usefulness ‘of the building wake analysis. The variation in the measured
values of radon and the values predicted by the AIRDOS code help to
illustrate the difficulty in assessing the exact concentration a large
distances from the source.

A number of areas have been investigated in and around the FMPC
production area in order to evaluate the occupational exposure. The tool
used to accomplish this type of modeling was limited to the Gaussian
plume model with primary emphasis on the AIRDOS and GENII codes.
Figures 3.4 through 3.6 represent the extent of the 100 and 500 meter
exposure points discussed later and the extent of the influence from the
maximum release of residue material.

Additional analysis was made of the chronic radon release by using
the AIRDOS code and actual data taken from both onsite and offsite
locations. Figure 3.7 shows the locations where actual radon
measurements were taken. Straight line distances, from the silos to the
monitoring point, were estimated for these locations using site maps. The
distances were then input into the AIRDOS code and the predicted
concentrations were determined. The result of this modeling is
summarized in Table 3.2. The measured values along with the net value
after subtracting for background are presented. The statistical results for
the measured values and the background values is presented in the 1988
Environmental Monitoring Report. The measured and predicted values are
seen to compare favorably in light of the limitations inherent in the
Gaussian Plume model.

The distances of the measured values are near the limit of
acceptability for the Pasquill-Gifford system of dispersion coefficients,
which is assumed to be at 1 to 2 kilometers. Additionally the AIRDOS code
is not extremely flexible for evaluation of regions where the terrain is as
varied as it is near the FMPC. In spite of the limitations the predicted
values are generally within an order of magnitude and for those critical
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Figure 3.4: Schematic Representation Of The
100 Meter Occupational Exposure Point
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Figure 3.5: Schematic Representation Of The 100 And 500
Meter Exposure Areas For The K-65 Risk Assessment
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Figure 3.6: Ilustration Of The Range Of
Influence For The Acute Al Source Term
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Figure 3.7: Offsite And Fenceline Radon
Monitoring Locations
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directions is nearly the same. The critical directions are considered to be
those where the measured concentrations were the highest. Figures 3.8
and 3.9 show 1987, 1988, and 1989 average radon concentrations at the
exclusion fence surrounding the K-65 silos. Table 3.2 presents the predicted
values corresponding to north, N, east, E, south, S, and west, W at
approximately the same distance as the exclusion fence. Again the
predicted and measured averages compare favorably.

The AIRDOS code was used with meterological data from on site.
The results in general show reasonable agreement with the average of
actual measured values. Example input and output for the AIRDOS
modeling is provided as an appendix. The net effect of the more detailed
modeling of the radon concentrations is to substantiate the concentration,
dose, and resulting risk estimates for the nearest resident, and the
population. An analysis of specific locations for the representitive
population center, a specific worker, and the nearest resident would have
yielded only marginally different results, therefore in order to keep the
study tractible and on schedule the compilation of these results was
eliminated. The radon concentration for a range of distances, from 25
meters to 2500 meters, is included in the example output in Appendix A.
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Table 32: Results Of Radon Concentration Modeling

Conc. (pCiD)
Loc. Dist.(m) Direct. . measured predicted
1988 1987 |87 - Bkgr] AIRDOS

A 925 N 1.3 1.5 0.88 0.07
B 1000 NNE 1.7 | 13 0.68 0.047
C 1500 NE 14 13 0.68 0.03
D 1500 ENE 11 11 048 0.034
E 1250 E 1.2 0.9 0.28 0.06
F 1600 ESE 11 13 0.68 0.043
G 1500 SE 0.9 0.7 0.08 0.031
H 1200 SSE 1.0 0.9 0.28 0.037
I 1000 S : 1.7 2.1 148 1.7

d 550 SSwW 0.9 1.0 0.38 0.12
K 450 SwW 2.1 29 2.28 3.52
L 300 Sw 1.3 0.7 0.8 5.29
M 300 WSW 2.0 18 1.18 0.489
N 375 WNW.| 0.8 0.9 0.28 0.45
0 650 _ NwW 13 1.9 1.28 031
P 1000 . NNW 0.9 0.7 0.08 0.12
RES1 1100 S 1.3 1.2 058 . 0.078
RES2 1000 NW 0.9 0.9 0.28 0.165
RES3 1500 NNW 13 1.2 0.58 143
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Figure 3.9: Radon Monitoring Locations
And Results At The Exclusion Fence Of The
K-65 Silos For 1989

1989 (3Q only)
(Avg. 5.13 pCi/1)
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The objective of the exposure assessment is to estimate the type and
magnitude of exposures which may result due to the release of the various
radionuclides present in the waste material of the K-65 silos. This
information, in the form of doses and exposure levels at the significant
exposure points, will be combined with the probabilities of silo failure, risk
coefficients, and EPA slope factors in order to fully characterize the
potential risk to each significant exposure point.

The exposure assessment process is composed of basically three
steps: 1) characterizing the exposure setting, 2) identifying the exposure
pathways, and 3) quantifying the exposure. The step of characterizing the
exposure setting involves analyzing the physical setting around the silos
and identifying the potentially exposed populations. The process of
identifying the exposure pathways involves determining the source terms,
defining the exposure points, and identifying the exposure routes. The
final step, quantifying the exposure, involves determining the exposure
point concentrations and doses.

For this investigation, the characterization of the physical setting
around the silos primarily involves being able to predict, as a function of
time and distance, the ultimate fate and distribution of the materials in the
K-65 silos as a result of an accident or the continued degradation of the silos
leading to the excessive release of radon. In order to perform the exposure
assessment, three significant exposure points were assumed. These three
exposure points represent the potentially exposed populations should a
release occur from the silos.

The first significant exposure point assumed is an occupational work
shift at the FMPC. This work force is assumed to be within 100 meters of
the silos when the accident occurs. Furthermore, the work force is
assumed to number 50 people. The second potential exposure point is the
nearest resident. This person is located a distance of 500 meters from the
site. The final potential exposure point is a small population, assumed to be
located approximately 14.5 kilometers away.
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The principal objective of this task is to identify those pathways by
which the identified populations may be exposed. Each exposure pathway
describes a mechanism by which a population (or individual) may be
exposed to the contaminants originating from the silos. These exposure
pathways were identified based on the consideration of the sources and
mechanisms of release of the radionuclides; the most likely environmental
transport route; and the location and activities of the potentially exposed
populations.

An exposure pathway consists of four elements: 1) source and
mechanism of radionuclide release, 2) retention or transport medium, 3)
point of potential human contact with the contaminated medium (referred
to as an exposure point), and 4) an exposure route (for example, inhalation)
at the contact point. Table 3.3 illustrates the pathway analysis
methodology.

rce And M nism Of ionucli 1

The source of the radioactive material for all the exposure scenarios
considered is the contents of the K-65 silos. The mechanisms involved with
the potential for release are dependent on the specific failure mode of the
silo and they are coupled with anticipated environmental processes. The
nature and magnitude of the source term was discussed and presented in
Section 2.4 and will not be specifically addressed here. The mechanisms for
transport of the residue material were also discussed in Section 2.3. The
specific mechanism involved with the release and transport of the waste
material from the silos is the wind. This study considered atmospheric
turbulence as the primary mechanism that can lead to the catastrophic
failure of the silo structures and the subsequent dispersal of the contents.
The wind or more appropriately the weather is both the initiator and the
basic phenomenon involved in the silo degradation over time.

The action of the wind and weather on the components of the
structure continue to degrade the integrity through weathering, wear,
freezing and thawing, and severe dynamic and static loadings. The
temperature changes when water is present significantly increases the
forces associated with the expansion and contraction processes. The long
term affect from these forces and processes is the steady increase in the
probability of failure and ultimately the release of radioactive material. As
previously discussed the failure mode is directly related to the quantity and
time frame of a release.

The source and mechanism can be stated simply as acute and
chronic release rates and types. The acute release has the larger source
term and the shorter time frame, and the chronic release is characterized
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by the continuous release of radon gas.

Table 3.3: Pathway Analysis Methodology for the Acute and Chronic Cases

Acute Case - Catastrophic Release (Al)

Radionuclides Released: Uranium-238, Uranium-234, Thorium-230,
Radium-226, and Radon-222.

Pathways Analyzed: Inhalation of gaseous plume (1 hour exposure).
Inhalation of resuspended dust.
External Exposure from radionuclides.

Exposure Points: Worker (100 meters).

Nearest Resident (500 meters).
Population Center (14.5 kilometers)

A - Total Rel f n (A2

Radionuclide Released: Radon-222

Pathway Ahalyzéd: Inhalation of radon plume (1 hourj.

Exposure Points: Worker (100 meters).
Nearest Resident (500 meters).
Population Center (14.5 kilometers)

i - Daily Rel -222

Radionuclide Released: Radon-222

Pathway Analyzed: Inhalation of radon-222

Exposure Points: | Worker (100 meters).

Nearest Resident (500 meters).
Population Center (14.5 kilometers)
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Acute Releases

The first type of acute release is designated as Al and is
characterized by the catastrophic failure of the silo structure permitting the
direct link between the environment and the radionuclide inventory. The
specific type of silo failure will determine the size of the release and
ultimately the impact. This study characterized the acute release as
resulting from the action of tornado strength wind loadings on the
structure. Assuming the turbulent forces are sufficiently strong to cause
complete or partial dome failure then these winds can be expected to be
capable of significant dislocation and transport of the radioactive waste. In
this case the total release of the available radon will be dispersed by the
wind. Additionally, the solid radionuclide particulates are assumed to be
distributed outside the silo structure. The quantity released was evaluated
in Section 2.3.

The second type of acute release is designated as A2 and is
characterized as a partial silo failure which results in the total release of
radon from the head-space of each silo. The AIRDOS-EPA computer code
was used to model the atmospheric dispersion of the radon and predict the
exposure point concentrations. It was assumed that the exposure time for
each acute case was one hour. The total volume of radon released over the
one hour period is assumed to be 50 Ci and represents the available volume
in the head space and the space above the residue but below the top of the
wall.

Chronic Release

This case is characterized by the chronic release of radon. The
chronic case is caused by existing cracks or holes in the concrete. These
openings will readily permit transfer of the radon gas but generally will not
permit the transport or loss of significant quantities of the heavier isotopes.
As indicated previously the actual mass of the radioactive waste is small
and is homogeneously mixed in the bulk mass of the silo's contents which
is primarily composed of silicates and water. The release of the elements of
radium, thorium, and uranium would require large openings and an
additional transport mechanism other than the wind.

Environmental Tran Medium

The time frame considered for this study was five years for the
failure potential, the radionuclide release, and the subsequent transport in
the environment. The possible transport processes available to distribute
the waste material after failure of the structure are: 1) atmospheric
distribution, 2) the hydrologic cycle, and 3) the distribution as a result of
biotic uptake. Atmospheric distribution would involve both resuspension of
contaminated dust and atmospheric distribution as a result of plume
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migration. Radionuclides deposited in the surface soil slowly migrate
through the vadose zone where they may in turn reach the water table and
travel large distances rapidly. Distribution of contaminants in the
environment can also occur as a result of - biotic uptake. Radionuclides can
enter plants through primarily two routes: roots (root uptake) and leaves
(foliar deposition). Of these three mechanisms for transport, the biotic
uptake route is the least significant for the failure scenarios addressed in
this study. The processes involved overlap and are interdependent. For
purposes of this study the hydrologic cycle was not evaluated in detail due to
predominantly long time frames and the large distances, to significant
exposure points, involved. The exposure point discussion is addressed in a
later section.

Atmospheric turbulence results in relatively rapid transport of
contaminants. This transport mechanism is also characterized as having
potentially significant affects or impacts over large distances. Significant
concentrations can result as far away as several kilometers from the point
of release. The transport of radioactive material from the silos for both
cases of the acute release and the chronic release mode was estimated
using the AIRDOS-EPA computer code. This code is based on the Gaussian
Plume Equation and utilizes the Pasquill-Gifford system for the evaluation
of the dispersion coefficients. This formulation is not specifically applicable
to the transport of contaminants as postulated in this study. The model
does, however, provide a basis for estimating the possible effects from the
release of the material in the K-65 silos.

The use of the AIRDOS-EPA code required data on the population
distribution, agricultural production and use, and site specific
meteorological conditions. The analysis, however, did not rely solely on the
results from the code. The models developed were also evaluated using
hand calculations and other numerical codes as supplemental material
and for verification.

The AIRDOS-EPA code is designed to model continuous long term
releases and was assumed to be adequate in regards to the chronic release
of radon. The acute releases are not as straight forward. The direction for
the release was taken to be that of the most prominent wind direction. The
wind speed and -stability class used were also not easily determined. The
result of applying the Gaussian Plume equation to atmospheric transport is
that the distribution of the contaminant is averaged based on the specific
input. The application to long time frames is justified based on the
averaging affect of the wind direction, speed, and stability class. For those
situations when the release time is short to intermediate the wind
conditions are required to be nearly constant over the time frame
considered. Any significant change in the wind direction, speed, or
stability class will result in different results and uncertainties. The time
frame for the acute releases was therefore taken to be approximately one
hour. This duration is also consistent with the duration of severe weather
phenomena. Table 3.1 provides the results of the atmospheric transport
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analysis for the radionuclides considered.

S. -ﬁ |E Enl

The three potentially significant exposure points previously
discussed (work force, nearest resident, and nearest population) were
hypothetlcally estabhshed to represent three types of

. Detailed information on these exposure points was
lacking, such as the work force population, the nearest population center
and estimate of its size, and other values related to the activity patterns for
each of the exposure points. Therefore, information on each exposure
point was assumed.

As detailed in the previous discussion-of the environmental transport
medium, the primary transport route in the event of a silo failure is the
wind. Therefore, atmospheric transport was assumed to be the only
transport medium. Furthermore, through the atmospheric transport of
the silo's material, it was determined that the principal pathways of
exposure would be the inhalation of the gaseous plume, the inhalation of
resuspended dust (after the source term has been spread across the surface
soil), and the external radiation dose (again, due to the source material
acting as a volume source from the ground). The inhalation dose from the
plume release was determined using AIRDOS - EPA (EPA, 1979); while,
the inhalation of resuspended dust was modeled atmospherically using
AIRDOS with the dose assessment being determined using the
methodology expressed in RESRAD (Gilbert, 1989). The external radiation
dose to each exposure point was modeled in a similar fashion using both
AIRDOS and RESRAD.
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3.5 Pathwav Analysis And Dose Assessment

The final step in characterizing the exposure assessment process is
to quantify the pathway analysis in terms of magnitude, frequency, and
duration of exposure for each of the significant exposure points based on
either the acute releases or the chronic release. Exposure is defined as the
contact of an exposure point with the radionuclide (either by inhalation or
external radiation dose). The information previously discussed detailing
the atmospheric distribution of the material will be used directly to
calculate the exposure point doses and exposure levels. Table 3.4 illustrates
the exposure point concentrations for each radionuclide as a result of an
acute release, except for radon-222 which is only used in the calculation of
the plume inhalation pathway. Table 3.2 listed the concentrations for radon
222 as a result of a chronic release.

Table 3.4: Surface Soil Exposure Point Concentrations for each
Radionuclide
(Based on the Atmospheric Distribution of
Source Material from the K-65 Silos)

PR’

Ex in ionucli Concentration
/g of soil
Work Force U-238 1.07

(100 meter Distance) U-234 1.07
Ra-226 50.0
Th-230 _ 35.3

Nearest Resident U-238 0.049

(500 meter Distance) U-234 0.049
Ra-226 2.34
Th-230 1.6

Nearest Population U-238 0.002

(14,500 meter Distance) U-234 0.002
Ra-226 0.041
Th-230 7.56 x 10-6
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External Radiation Pathway

The calculation of exposure point doses for the external radiation
pathway is based on the methodology contained in the RESRAD manual
(Gilbert, 1989). Equation 3.1 shows the basic formula used to calculate the
external radiation dose. These doses are based on the acute catastrophic
release, as may occur in a severe weather event.

_pCi .. (mrem/yr g
Cone; X DCFn (rae D xmb () xF0L (5,

1000 mrem/rem

Dose;; =

Dosei1 = Dose from the ith radionuclide over the external
radiation pathway, 1, in units of rem per year.

Conc.i = Concentration of the ith radionuclide in units of
picocurie per gram of soil.

DCFi1 = Dose Conversion Factor of the ith radionuclide with

units of millirem per year per picocurie per gram of
soil. g o

pb = Bulk density of soil with units of grams per cubic
centimeter.

FO1 = Occupancy factor for direct radiation pathway, 0.6.

This pathway is based on an accidental release of material from the
silos during a severe weather event. During a tornado, for instance, a
certain percentage of material will be blown from the silos and will remain
suspended in air as fine particulate matter and result in a plume
inhalation dose, while the majority of the material will settle in decreasing
quantities with the increasing distance from the silos. The dose calculated
in Equation 3.1 is the annual effective dose equivalent for external radiation
from this deposited material. The concentration refers to the radionuclide
concentration in the surface soil with units of picocuries per gram of soil.
The bulk density of the soil is given by p with units of grams per cubic
centimeter. The final term of Equation 3.1 is the occupancy and shielding
factor, defined as 0.6 in RESRAD. Table 3.5 lists the doses calculated for the
exposure points from the external radiation pathway. In Table 3.5 the total
dose, abbreviated EDE for effective dose equivalent, refers to the summation
of all four radionuclides for each exposure point.
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Table 3.5: Exposure Point Doses for the External Radiation Dose
(Acute Case Al)
(Based on the Atmospheric Distribution of
Source Material from the K-65 Silos)

Exposure Point Radionuclide Dose
- (rem/yr)
Work Force U-238 8.1x 105
(100 meter Distance) U-234 8.1 x 107
Ra-226 046
Th-230 - 40x10%
Total Dose (EDE) 0.46
Nearest Resident U-238 3.7 x 10-6
~ (500 meter Distance) U-234 - 8.7x108
' Ra-226 0.022
' ‘ Th-230 T 18x10°6
Total Dose (EDE) 0.022
Population U-238 1.5x 107
(14,500 meter Distance) U-234 1.5x 109
Ra-226 1.0x 103
Th-230 8.4 x 10-12
Total Dose (EDE) 1x 103
Inhalati n D A 1

The inhalation of resuspended dust pathway also follows the
methodology contained in the Gilbert manual. This pathway is also based
on the release of material from the silos during a severe weather event.
During a tornado a certain percentage of material will be blown from the
silos and will remain suspended in air as fine particulate and result in a
plume inhalation dose, while the majority of the material will settle in
decreasing quantities with the increasing distance from the silos. This
deposited material, whose distribution was determined by the AIRDOS-
EPA code, was used to calculate the inhalation of resuspended dust dose.
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Equation 3.2 illustrates the dose -calculation for the inhalation of
resuspended dust pathway. The term ASR refers to the air-to-soil

 concentration ratio (dust loading), a RESRAD default value of 2 x 10-4 g/m3

was used. The term FI refers to the annual inhalation rate (7300 m3 per
year). The value of 0.6 is used as an occupancy factor (Gilbert, 1989). Table
3.6 lists the exposure point doses for this pathway.

Dose;p; = Conc,; (p—g—i) x DCFj2 (Q;lgil&) x Flp (Qy%) x FO2(0.6) x ASR (;‘%)

(3.2)

Dosei21 = Dose to an individual at each significant exposure

point from the ith radionuclide over the inhalation
pathway, 2, and subpathway of resuspended dust, 1,
with units of mrem per year (converted to rem/yr).

Conc.i = Concentration of the ith radionuclide in the surface
soil, with units of picocuries per gram of soil (pCi/g).

DCF;2 = Dose Conversion Factor for the ith radionuclide with
units of millirem per picocurie.

FI2 = Inhalation rate of 7300 cubic meters per year (20 m3/day).
FO2 = Occupancy Factor for the inhalation pathway, 0.6.

ASR = Air-to-Soil Concentration Ratio or dust loading factor,
with units of grams per cubic meter (g/m3).
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Table 3.6: Exposure Point Doses for the Inhalation of

(Based on the Atmospheric Distribution of

Exposure Point

Work Force
(100 meter Distance)

Total Dose (CEDE)

Nearest Resident
(500 meter Distance)

Total Dose (CEDE)

Population
(14,500 meter Distance)

Total Dose (CEDE)

2
fos

Dust Pathway
(Acute Case Al)

Source Material from the K- 65 Silos)

U-238
U-234
Ra-226
Th-230

U-238
U-234
‘Ra-226
Th-230

U-238
U-234
Ra-226
Th-230
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Inhal

The plume inhalation pathway is based on the quantity of suspended
particulates resulting from a severe weather event disrupting the silo's
integrity. As with the other two pathways, this pathway's results are based
on the release of four significant radionuclides: uranium-238, uranium-
234, radium-226, thorium-230, and radon-222. The calculations for this
pathway were determined using AIRDOS EPA to model the atmospheric
transport of the puff release and the methodology described by Gilbert to
calculate the dose. The models utilized in the AIRDOS code were
previously described. Equation 3.3 illustrates the calculation of the plume
inhalation dose. Table 3.7 lists the doses at each exposure point which were
determined for this pathway. The total dose refers to the summation of
doses for each of the five radionuclides, with the abbreviation of CEDE
referring to the annual committed effective dose equivalent.

IO'GuCi
pCi

Dose;9o = Air Conc. (gg—) x Flog x ED x ( ) x DCFj2 (3.3)

m

yvhere the terms of Equation 3.3 are defined as follows: .

Dosei22 = Dose from the ith radionuclide to an individual at a

significant exposure point over the inhalation
pathway, 2, and the subpathway of the gaseous
plume release, 2, with units of rem per year.

Air Conec. = Air Concentration of ith radionuclide at significant

exposure point with units of picocuries per cubic
meter. Modeled using the AIRDOS-EPA code.

FI2 = Inhalation intake rate for individual at significant
exposure point with units of cubic meters per hour (0.833
m3/hr).

ED = Exposure Duration for an individual at each significant
exposure point (1 hour).

DCFi2 = Dose Conversion Factor for the ith radionuclide with
with units of (rem/uCi) or (rem/pCi).
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Table 3.7: Exposure Point Doses for the Inhalation of an
Acute Atmospheric Release of Material from the K-85 Silos

(Acute Case Al)
(Based on 1 Hour Exposure Period)
Exposure Point Radionuclide Dose
(rem/yr)
Work Force U-238 2.8x 101
(100 meter Distance) U-234 3.0x 101
' : Ra-226 9.2x 101
Th-230 2.6 x 101
Rn-222 28
Total Dose (CEDE) 3.05x 101
Nearest Resident U-238 1.4 x 10-2
(500 meter Distance) U-234 1.5x 10-2
: Ra-226 4.3 x 10-2
Th-230 1.2 x 100
Rn-222 ‘ 13x101
Total Dose (CEDE) . 1.43
Population - U-238 1.8 x 10-7
(14,500 meter Distance) U-234 2.0 x 107
Ra-226 5.6 x 107
Th-230 ' 1.6x 105
Rn-222 23x104
Total Dose (CEDE) ~ 2.5x 104
ion of f h Ex Poi Al

The final task of the exposure assessment phase for the acute release
case Al is to determine the total dose to each exposure point based on the
summation of the applicable pathways. The three pathways analyzed for
the dose assessment, external radiation, inhalation of plume release, and
inhalation of resuspended dust, are complete pathways given silo failure
for each of the exposure points. Table 3.8 lists the total doses for each
exposure point based on the acute release of uranium-238, 234, radium-226,
thorium-230, and radon-222.
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Table 3.8: Total Doses at each Exposure Point -

for the Acute Case Al
(Based on the Plume Inhalation Dose, Inhalation of Resuspended Dust, and
External Radiation Dose)
rem - r
Work Force
(100 meter Distance)
Total Dose (CEDE) U-238, 234, Ra-226, Th-230 3.1x10!
Rn-222
Nearest Resident
(500 meter Distance)
Total Dose (CEDE) U-238, 234, Ra-226, Th-230 1.5
Rn-222
Population
(14,500 meter Distance)
(individual of Population)
Total Dose (CEDE) U-238, 234, Ra-226, Th-230 1.3x 103
Rn-222

Exposure Assessment of the Acute Total Release of Radon-222 - Case A2

The exposure assessment of the acute total release of radon-222,
designated as case A2, is a subset of the gaseous plume inhalation dose
which is designated as case Al. Therefore, the methodology used to
determine the acute radon-222 dose at each exposure point is the same as
that which was previously discussed in Equation 3.3. This pathway is
based on the partial failure of the silo's structure to the extent that only
radon-222 can escape. Table 3.9 lists the doses determined for the acute
case A2, the total release of radon-222.
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Table 3.9: Doses at each

Work Force
(100 meter Distance)

Total Dose (CEDE) Rn-222

Nearest Resident
(500 meter Distance)

Total Dose (CEDE) Rn-222

Population
(14,500 meter Distance)
(individual of Population)

Total Dose (CEDE) Rn-222
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Point for the Acute Case A2
(Based on the Total Release of Radon-222)

E Poi Radionuclid

Dose
‘l‘gml

0.13
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Exposure Assessment of the Chronic Release

Exposure to individuals at each of the significant exposure points
from radon-222 occurs on a daily basis. The details of the chronic case were
previously described. The environmental transport modeling, the exposure
points, and the pathways are the same as the acute cases and as a result
will not be discussed here. The primary difference is in the source term
available, since only radon will be available for the chronic case. Table 3:10
lists the exposure point doses for the chronic case.

Table 3.10: Exposure Point Doses for the Chronic Case - Radon-222 Release

Exposure Point Dose

: (rem/vr)
Work Force
(100 meter Distance) 2.57
(CEDE) . '
Nearest Resident
(500 meter Distance) 0.21
(CEDE)
Population
(14,500 meter Distance) 1.2 x 103
(CEDE)
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Summary of Exposure Assessment

The exposure assessment process is composed of three components:
1) the characterization of the exposure setting, 2) the identification of the
exposure pathways, and 3) the determination of exposure point doses. The
characterization of the exposure setting consisted of identifying the physical
characteristics of the region around the K-65 silos which would lead to the
transport of contaminants from the silos to the potential exposure points.
Three significant exposure points were identified as reasonable maximum
ints. The principal contaminant transport route identified was
that of atmospheric transport. The atmospheric distribution of
radionuclides from the silos to the surrounding region results in three
pathways which contribute to the dose assessment of each significant
exposure point. The three exposure pathways are inhalation of the puff
release, inhalation of the resuspended dust after radionuclides have been
deposited on the surface soil, and the external radiation resulting from the
atmospherically deposited radionuclides. Quantifying the exposure
assessment consisted of determining the exposure point concentrations for
each radionuclide in the air and surface soil. The principal radionuclides
which were investigated: uranium-238, uranium-234, radium-226,
thorium-230, and radon-222. Dose conversion factors from the Department
of Energy (DOE, 1988) and the AIRDOS EPA computer code were used to
calculate the doses to an individual at each exposure point.

Table 3.8 lists the total doses to an individual at each exposure point
for the acute case Al. These doses reflect an individual's total dose, given
the assumptions of the Al case of silo failure, for the first year. Table 3.9
lists the doses for the acute A2 case of silo failure. These doses represent
both the first year dose and the five year dose since the probability of silo
failure is based on one occurrence in the next five years. Table 3.10 lists the
doses for the chronic radon-222 case at each of the exposure points. These
doses are in units of rem per year since they represent the annual dose that
an individual at each of the three exposure points could receive, given the
assumptions, each year.
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4.0 RISK CHARACTERIZATION

This section of the investigation deals with the final step of the
baseline health risk assessment process, the risk characterization phase.
In this step the exposure assessments are summarized and integrated into
quantitative and qualitative expressions of risk. In the following sections
the risk characterization methodology is developed for each exposure point
from the perspective of the acute case and the chronic case. The acute case
has two subcategories which are either the catastrophic release of the silos
contents from natural forces, such as a tornado, or a total release of radon
resulting from the ultimate failure of the silos due to their continued
structural degradation.

In the preceding draft report, "A Baseline Risk Assessment for the K-
65 Silos Using EPA Methodology for Applicability to the EE/CA," the risk
characterization step was performed by multiplying the ICRP risk

coefficient, 2 x 10-4 risk per rem of exposure, by each of the particular
exposure point doses in order to determine annual risks. These risks were
then coupled with the probabilities associated with the two classes of failure
modes which are severe weather conditions and natural degradation of the
concrete structure in order to quantify the annual risks.

The following paragraphs present a revision of the risk
characterization methodology detailed in the draft report. Also contained
in the following discussion is a risk characterization using the newly
acquired Environmental Protection Agency's methodology for determining
risks from radionuclides. The Office of Radiation Programs (ORP) has
recently issued these radionuclide carcinogenic slope factors for the
purpose of conducting health risk assessments. The "Slope Factors” were
obtained directly from ORP in the form of the Health Effects Assessment
Summary Table C (HEAST Table C). The methodology presented in this
report for using these slope factors is contained in Chapter 10 of the Human
Health Evaluation Manual (EPA, 1989) which details the EPA method for
performing radiation risk assessments . Table 4.0 presents a summary of
the pathway analysis methodology for the acute and chronic cases. Table
4.1 presents a summary of the risk characterization methodologies.

The risk characterization methodologies outlined in Table 4.1 are
based on the effective dose equivalent risk coefficient and the EPA lifetime,
age-averaged slope factors. The risk coefficient method expresses the risk
as an annual risk. The annual risk can be multiplied by 70 years to give the
lifetime risk. Slope factors were derived to represent the lifetime risk. Both
methodologies will be presented in this investigation in order to compare
the results from the draft study with the results obtained by using the
updated risk information obtained from the Environmental Protection
Agency.
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Table 4.0: Pathway Analysis Methodology for the Acute and Chronic Cases

Acute Case - Catastrophic Release (Al)

Radionuclides Released: Uranium-238, Uranium-234, Thorium-230,
Radium-226, and Radon-222.

Pathways Analyzed: Inhalation of gaseous plume (1 hour exposure).
Inhalation of resuspended dust.
External Exposure from radionuclides.

Exposure Points: Worker (100 meters).
Nearest Resident (500 meters).
Population Center (14.5 kilometers)

A - Total Rel f A2

Radionuclide Released: Radon-222

Pathway Analyzed: Inhalation of radon plume (1 hour).

Exposure Points: Worker (100 meters).
Nearest Resident (500 meters).
Population Center (14.5 kilometers)

hroni - Dail 1 f n-222

Radionuclide Released: Radon-222

Pathway Analyzed: Inhalation of radon-222

Exposure Points: Worker (100 meters).

Nearest Resident (500 meters).
Population Center (14.5 kilometers)

¥40

Y
=
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Table 4.1: Risk Characterization Methodologies

Methods Methods
Acute 2» EDEipqx RC x PA1 25 ELipq x SFip x Pa1
Catastrophic '
Release (A1) 25 EDEipg x RC 25 ELipq x SFip
Acute ' EDEipq x RC x Pa2 ELipq x SFip x PA2
Total Rn-222 ‘
Release (A2) EDEipqx RC ELipq x SFip
Chronic EDEipq x RC ELipq x SFip
Rn-222
Release

Where the terms of Table 4.1 are defined as follows:

EDEip = Effective Dose Equivalent for pathway p,
exposure point q, and radionuclide i (rem/year).

RC = Risk Coefficient, 2 x 10-4 risk per rem of exposure.

PA1 = Probability associated with the acute case of
catastrophic release, designated by subscript Al.

EL;p = Exposure Level for pathway p, exposure point q,
and radionuclide i (pCi).

SFip = EPA Slope Factor for pathway p and radionuclide
i with units of either (pCi)-! or (pCi/m2/yr)-1.

PA2 = Probability associated with the acute case of total
radon release, designated by subscript A2.



Defining the Rigk Coefficient. RC

Risk is synonymous with a hazard or peril and appears as a loss or
injury. Risk analysis addresses the probability related to this loss or injury.
This view of risk, although simplified, provides a measure of the hazard.
In everyday life risk is often expressed as a probability. This probability is
often stated in very general terms. For example, the risk of being killed in a
car accident is 1 in 4000. The EPA recently issued warnings regarding
radon gas in the home. The EPA established an action level at 4 pCi/liter of
air. This was based on the risk to individuals breathing this air. The risk
to individuals from radon gas (its daughter products) is lung cancer
incidence. EPA radon data indicates that radon gas at a level of 4
picocuries per liter would result in 13-50 lung cancer deaths per 1000 people
exposed over their lifetime. This would be considered a lifetime risk of

50/1000 or 5 x 10-2,

Evaluating the risk from chronic low level exposure to ionizing
radiation has been the subject of countless research papers and prestigious
scientific committee evaluations. Excellent discussions of the effect of low
level ionizing radiation on humans can be found in the United Nations
Scientific Committee on the Effects of Atomic Radiation (UN, 1977) and
National Academy of Sciences / National Research Council Advisory
Committee on the Biological Effects of Ionizing Radiation (known as BEIR
ITIIXNAS, 1972). Both reports contain risk estimates for exposure to chronic
low level ionizing radiation. These risk estimates vary and are the subject
- of much scientific discussion. -

It is now widely acknowledged that the "risk" from low level
exposure to ionizing radiation is the risk of a fatal cancer. Thus, the
current discussion focuses on the risk coefficient associated with the
induction of a fatal cancer. Most scientists (BEIR III, ICRP, and NCRP)

now use a risk coefficient of 2 x 10-4 per rem of exposure. This means that if
10,000 people were exposed to 1 rem of radiation, there is a probability that 2
fatal cancers would be induced. Since the national cancer rate is about
21%, a cohort of 10,000 people will have 2100 "natural” cancer deaths.
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Defining the EPA Slope Factors, SFip

In the draft investigation the risk characterization step was
performed by multiplying the dose equivalents for each exposure point by

the ICRP risk coefficient of 2 x 104 risk per rem of exposure. This method
yielded an estimate of risk but was not completely applicable for members of
the general public. A better estimate of risk can be determined by using age
averaged coefficients for individual organs receiving the radiation doses
(EPA, 1989). This EPA method uses organ-specific dose conversion factors
to derive slope factors that represent the age-averaged lifetime excess
cancer incidence per unit intake for the radionuclides of concern. The
Integrated Risk Information System (IRIS) is currently being updated to
include these slope factors for various radionuclides. over the principal
pathways of exposure (EPA, 1989). At the time of the draft report, the IRIS
network could not be accessed which is why the conventional method of
using dose equivalent risk coefficients was used. Since the draft report
carcinogenic slope factors for the radionuclides of concern have been
obtained from the Office of Radiation Programs in Washington, D.C (EPA,
1990). The following sections define the equations associated with both the
EPA slope factor method and the risk coefficient method.

isk T ization of A

The risk assessment methodology for the acute case A1 was outlined
in Table 4.1. The two methodologies for characterizing risk which are
described in Table 4.1 are the risk coefficient method and slope factor
method. The results of the risk coefficient method will be illustrated first.

Risk Coefficient Method

Table 4.2 lists the total doses to an individual of each exposure point
for the acute case A1l. The doses are in units of rem per year and represent
the annual contribution to the 50 year committed effective dose equivalent
from a one year intake. If the exposure duration for each exposure point
were a lifetime, a lifetime dose could be determined by multiplying these
total doses by a lifetime of 50 or 70 years. The Environmental Protection
Agency assumes a lifetime is 70 years. However, this assessment assumed
exposure over the inhalation of resuspended dust and the external
radiation pathways would occur for the period of one-to-five years. The puff
release pathway was assumed to have an exposure period of one hour.
Therefore, the doses from the inhalation of resuspended dust and the
external irradiation pathways are multiplied by 5 years to represent their
total dose contribution to each exposure point over the five year exposure
duration.
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Table 4.2: Total Doses to an Individual of each Exposure Point for

the Acute Case Al
Exposure Point Total Dose Total Dose
(first year) (five year)
(rem) (rem)
Work Force 30.9 32.8
Nearest Resident 145 154
Population 1.3x 103 5.3 x 10-3

Risk Coefficient Method (continued)

The risk coefficient methodology is expressed in Equation 4.0. The

risk coefficient (RC) is 2 x 10-4 risk per rem of exposure and the dose
(Dcase,EP) is the total dose for each particular case and exposure point.

RiskcaseEP = RC x DeaseEP (4.0)

Table 4.3 lists the risks determined using the risk coefficient method for
first year exposure and also the risk for the total five year exposure
duration. ,

Table 4.3: Risks to an Individual of each Exposure Point for
the Acute Case Al Based on the Risk Coefficient Method

(first year) (five year)

Worki Force 6.2 x 103 | 6.6 x 10-3

Nearest Resident 29x104 3.1x 104

Population 2.5x 107 1.1x 106
144
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Risk Coefficient Method (continued)

Risks were also developed using the risk coefficient method and the
probability of silo failure for the acute case Al. The general formula for
determining risk by incorporating the probability of silo failure is shown in
Equation 4.1, where P defines the probability associated with the particular
case. Table 4.4 lists the risks as reflected by including the probability of silo
failure for the acute case Al. This probabilistic risk assessment
methodology is included since it reflects a more realistic assessment of the
risk associated with the failure of the silos by a severe weather event. The
development of the probabilities was discussed in Section 2.0 and Table 4.4a
lists the probabilities for the acute case Al: probability per year and
probability over the 5 year exposure duration.

Riskcase EP = RC x DcaseEP X Pecase (4.1)

Table 4.4a: Probabilities for the Acute Case Al - Severe Weather Event

Probability Description ~~ Silo1 Silo 2 Average
Probability per year 1.25 x 104 1.25 x 104 1.25 x 104
Probability over 5 years 6.25x104  6.25x104 6.25 x 104

Table 4.4: Risks to an Individual of each Exposure Point for
the Acute Case Al
Based on the Risk Coefficient Method and the Associated Probability

Ex r in Risk Risk
(five vear) (Probability)
Work Force 6.6 x 10-3 4.1x 106
Nearest Resident 3.1x104 1.9x 107
Pop;xlation 1.1x 106 6.7 x 10-10
- 145
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Carcinogenic Slope Factor Method

The carcinogenic slope factor method is based on the United States
Environmental Protection Agency's risk assessment methodology for
radionuclides (EPA, 1989). The EPA classifies all radionuclides as Group
A carcinogens based on their property of emitting ionizing radiation and on
the extensive weight of evidence provided by epidemiological studies of
ionizing radiation induced cancers in humans (EPA, 1990). The U.S. EPA
use data derived from both human epidemiological studies and animal
experiments to construct mathematical models of exposure, dose, and risk
in order to estimate radionuclide slope factor values. The complex models
utilized by the EPA consider pathways of exposure, the distinct metabolic
behavior of each element by compound and the radiological characteristics
of each nuclide of concern, the time and duration of exposure, the
radiosensitivity of each target organ in the body, the latency period for
cancer expression in these organs, and the age and sex of individuals in the
exposed population. The radiation risk models extrapolate cancer risks due
to low dose exposures from risks observed at higher doses using linear,
dose-response relationships.

Slope factors for radionuclides are characterized as best estimates
(maximum likelihood estimates) of the age-averaged total lifetime excess
cancer incidence, total cancers, per unit intake or exposure. Quantitative
carcinogenic slope factors for radionuclides estimate the risk per unit
intake or exposure. More specifically, they represent the risk per picocurie
inhaled or ingested or as the risk per picocurie per square meter per year
due to external exposure.

The acute case Al is based on an individual at each exposure point
receiving a dose of radiation from three pathways: 1) external radiation
pathway, 2) inhalation of resuspended dust pathway, and 3) inhalation of
gaseous plume pathway. The following paragraphs detail each of these
pathways as they are developed using the EPA's radionuclide slope factors.
External Radiation Pathway

The EPA derived risk associated with the external radiation pathway
is defined by Equation 4.2.

Riskipq = Concis x FO1 x pb x 1000 g’kg x SFip x ED (4.2)
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Carcinogenic Slope Factor Method (continued)

External Radiation Pathway (continued)

The terms of Equation 4.2 are described as follows:

Riskipq = EPA based age-averaged, lifetime risk for ith

radionuclide, pathway p, and exposure
point q.

Concis = Concentration of ith radionuclide in surface soil
with units of pCi/g of soil.

FO1 = Occupancy Factor for the direct radiation
pathway.

pb = Bulk Surface Density of contaminated soil with units
of kg/m2, ‘

ED = Exposure Duration, 5 years;

SFip = Slope Factor for radionuclide i and pathway p
with units of (pCi)-1 or (pCi/m2/yr)-1.

Table 4.5 lists the risks determined for the external radiation
pathway using the EPA methodology of the carcinogenic slope factors. As
one would expect the highest risk exists for an individual of the work force
exposed to radium-226, since it emits a high energy gamma-ray.

147
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Carcinogenic Slope Factor Method (continued)

Table 4.5: Risks Determined for the External Radiation Pathway of the
Acute Case Al - Based on the EPA Slope Factor Methodology

Exposure Point Radionuclide Risk

Work Force Uranium-238 2.7x108
Uranium-234 3.3x108

Radium-226 1.1x 105

~ Thorium-230 11x106
Total Risk 1.3x10°
Resident Uranium-238 1.2x 109
Uranium-234. 1.5 x 10-9

Radium-226 5.3x 1077

Thorium-230 52x108

Total Risk '  5.9x107
Population Uranium-238 5.0 x 1011
Uranium-234 6.2x10-11

Radium-226 2.5x 108
Thorium-230 2.4 x10-13

Total Risk 2.5x 108

Inhalation of Resuspended Dust Pathway

The inhalation of resuspended dust pathway is based on the same
environmental transport properties as those discussed in Section 3 which
characterized the dose assessment. Equation 4.3 illustrates the
methodology used to characterize the inhalation of resuspended dust
pathway using the EPA based risk techniques.

Riskipq = Concisx FO2xASRxFl2xEDxEFxSFip  (4.3)

-
18-S
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Carcinogenic Slope Factor Method (continued)

Inhalation of Resuspended Dust Pathway (continued)

The terms of Equation 4.3 are defined as follows:

Riskipq = EPA based age-averaged, lifetime risk for ith

radionuclide, pathway p, and exposure
point q.

Concis = Concentration of radionuclide i in surface soil
with units of pCi/g of soil.

FO2 = Occupancy Factor for the inhalation pathway, 0.6.

ASR = Air-to-Soil Concentration Ratio, 2 x 104 g/m3.
FI2 = Air Intake Rate, 20 m3/day.

ED = Exposure Duration, 5 years.

EF = Exposure Frequency, 365 days/year or 250
days/year.

SFip = Slope Factor for radionuclide i for the inhalation
pathway p, with units of (pCi)-1.

Table 4.6 lists the risks for the inhalation of resuspended dust
pathway determined using the EPA based methodology. The highest risk
for this pathway is contributed by thorium-230.

i 149
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Carcinogenic Slope Factor Method (continued)

Table 4.6: Risks Determined for the Inhalation of Resuspended Dust
Pathway of the Acute Case Al - Based on the EPA Slope Factor Methodology

Work Force Uranium-238 7.7x 108
Uranium-234 8.7x 108
Radium-226 45x 107
Thorium-230 3.3x106
Total Risk 3.9x 106
Resident Uranium-238 5.2x 109
Uranium-234 5.8 x 109
Radium-226 3.1x 108
Thorium-230 2.2x107
Total Risk ' 2.6 x 107
- Population Uranium-238 2.1x 10-10
Uranium-234 2.4 x 10-10
Radium-226 1.5 x 109
Thorium-230 1.0 x 1012
Total Risk 1.9x 109

Inhalation of Gaseous Plume Release
The inhalation of the gaseous plume release is characterized by
Equation 4.4. This pathway is based on a puff release from the silos, which

is initiated by a severe weather event, with the exposure period at each
exposure point being one hour.

Riskipq = Conciax FI2xED x1x1012pCi/CixSFip  (4.4)

4-12
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Carcinogenic Slope Factor Method (continued)

Inhalation of Gaseous Plume Release Pathway (continued)

The terms of Equation 4.4 are defined as follows:

Riskipq = EPA based age-averaged, lifetime risk for ith

radionuclide, pathway p, and exposure
point q.

Concia = Concentration of radionuclide i in air with
units of Ci/m3 of air (modeled using AIRDOS).
FI2 = Air Intake Rate, 0.833 m3/hour.

ED = Exposure Duration, 1 hour.

SFip = Slope Factor for radionuclide i for the inhalation
pathway p, with units of (pCi)-1.

Table 4.7 lists the risks determined for the acute case Al of the
gaseous plume release pathway. Observe that the exposure duration for
this pathway is one hour, based on the estimated length of time of the severe
weather event. The most critical radionuclide is the thorium-230.
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Carcinogenic Slope Factor Method (continued)

Table 4.7: Risks Determined for the Inhalation of Gaseous Plume Release
Pathway of the Acute Case Al - Based on the EPA Slope Factor Methodology

Exposure Point Radionuclide
Work Force Uranium-238
Uranium-234
Radium-226
Thorium-230
Radon-222
Total Risk
Resident Uranium-238
Uranium-234 -
Radium-226
Thorium-230
‘ ' Radon-222
Total Risk
Population Uranium-238
Uranium-234
Radium-226
Thorium-230
Radon-222
Total Risk
The Total Risk for each Exposure Point - Acute Case Al

5.6 x 10-°
5.6 x 105
3.5x 104
2.5 x 10-3
2.0 x 105
3.0x103

2.8 x 10-6
2.8x 106
1.6x 105

'1.2x 104

9.2x107 -
1.4 x104

3.6x1011
3.6x10-11
2.1 x 10-10
1.5x 109
1.6 x 10-9
3.5x 109

The total risk for each exposure point is defined by Equation 4.5.
Each exposure point, under the acute case Al, is assumed to be exposed

through the three previously discussed pathways.

Riskq = Zip ELipq x SFip

4-14
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Rigk CI zation of Acute Case A] (continued!

Carcinogenic Slope Factor Method (continued)
The Total Rigk for each E r int - Al (continu

Table 4.8 lists the total risks for each exposure point for the acute case
Al. These risks represent the Environmental Protection Agency's
methodology for determining the lifetime cancer risk from the intake or
exposure to radionuclides.

Table 4.8: Total Risks Determined for the Acute Case Al
Based on the EPA Slope Factor Methodology

Exposure Point Risk
Work Force 3.0x 103
Resident 14x104
Populatien : 3.0x 108

In a similar fashion, the total risks for the acute case Al, expressed
above, can be modified to reflect the probability of silo failure under the
acute case Al and in the process present a more realistic estimate of the
risk associated with the failure of the K-65 silos. These enhanced risks are
listed in Table 4.9. The average probability of silo failure over the 5 year
exposure duration was used to determine the risks in Table 4.9. The
probabilities for the acute case A1 are listed in Table 4.4a.

Table 4.9: Total Risks Determined for the Acute Case Al - Based on the
EPA Slope Factor Methodology and the Probability of Silo Failure

X r in Risk
Work Force 2.0 x 106
Resident 89 x 108
Population 1.9 x 10-11

133
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Risk Characterization of A Case A2

Risk Coefficient Method

Table 4.10 lists the doses from radon-222 for the acute case A2 at each
exposure point. The acute case A2 is similar to the acute case Al. The
difference is manifested in the type of event which leads to the silo failure.
The failure of the silos for the acute case A2 is based on the natural or

"continued degradation of the silo's structure. The risks for this case were
developed in a similar fashion as for the acute case Al. First, the risks at
each exposure point will be estimated using the risk coefficient method and
then the risks at each exposure point will be estimated again but with the
additional influence of the acute case Al probability. Equation 4.6
illustrates the risk calculation for the conventional method of simply
multiplying the risk coefficient by the dose equivalent. Equation 4.7
illustrates the risk calculation for the risk coefficient method using the
probability of silo failure given the natural degradation case.

Riskq = 2ip Doseipq x RC (4.6)
_Riskqp = Xip Doseipg x RCxPa2 4.7

The terms of Equations 4.6 and 4.7 are defined as follows:

Riskq = Risk to Exposure Point q based on the risk
coefficient method.

Riskqp = Risk to Exposure Point q based on risk
coefficient method and Probability A2.

Doseipq = Dose for radionuclide i, pathway p, and
exposure point q.

RC = Risk Coefficient, 2 x 10-4 risk per rem of
exposure. :

Table 4.11 illustrates the risks determined from the doses in Table
4.10 using the risk coefficient value.

fowed
N
-
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Risk CJ sation of Acute Case A2

Risk Coefficient Method (continued)

Table 4.10: Doses at each Exposure Point for the Acute Case A2

Exposure Point Dose
{rem)

Work Force 2.8
(100 meter Distance) -
Nearest Resident 0.13
(500 meter Distance)
Population 2.3 x 104
(14,500 meter Distance)

(Individual of Population)

Table 4.11: Risks at each Exposure Point for the Acute Case A2 Based

on the Risk Coefficient Method
Exposure Point o Risk -
Work Force 5.7 x 104

(100 meter Distance)

Nearest Resident 2.6 x 105
(500 meter Distance)

Population 4.6x 108
(14,500 meter Distance)
(Individual of Population)

The risks in Table 4.11 can be enhanced by multiplying by the
probability of silo failure for the acute case A2. These modified risks are
listed in Table 4.12. Table 4.12a lists the probabilities for the acute case A2.

4-17




Risk Coeﬂicient Method (continued)

Table 4.12a: Probabilities for the Acute Case A2 - Natural Degradation

Probability Descripti Silo1 Silo 2 Average
Probability per year 0.036 0.0336 0.0348
Probability over 5 years 0.180 0.168 0.174

Table 4.12: Risks at each Exposure Point for the Acute Case A2 Based on
the Risk Coefficient Method and the Probability of Silo Failure

Exposure Point Risk
Work Force 1.0 x 104
(100 meter Distance)

Nearest Resident 4.5x 106
(500 meter Distance)

Population 8.1x 109
(14,500 meter Distance)

(Individual of Population)

4-18
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Risk CI zation of Acute Case A2 (continued:

Slope Factor Method |

The slope factor risk method for the acute case A2 is similar to the
risk coefficient method, except instead of determining the exposure point
dose one determines an Exposure Level . The exposure level is then
multiplied by the pathway and radionuclide specific slope factor in order to
characterize the lifetime, age-averaged cancer risk for an individual at
each exposure point. Equation 4.8 describes the risk determined by using
the slope factor methodology. Equation 4.9 illustrates the slope factor risk
but with the addition of the acute case A2 probability of silo failure.

Riskq = 2ip ELipq x SFip (4.8)

Riskqp = ZA'p ELipq x SFip x PaA2 (4.9)

The termé of Equations 4.8 and 4.9 are defined below.

Riskq = Slope Factor Risk for exposure point q.

ELipq = Exposure Level for radionuclide i,
pathway p, and slope factor of
radionuclide i and pathway p. This case
is only for radon-222 and the inhalation
pathway.

SFip = Slope Factor for radionuclide i and pathway

p with units of (pCi)-1 or (pCi/m2/yr)-1.

Riskgqp = Slope Factor Risk for exposure point q

with the Probability (A2) of silo failure
included.

PA2 = Probability of Silo Failure for the natural
degradation case.

The exposure Level, ELradon-222q, is defined by Equation 4.10.

ELradon-222q = Concair x FI2 x ED x CF (4.10)

aat e 1 57
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Slope Factor Method (continued)

The terms of Equation 4.10 are defined as follows:

ELradon-222q = Exposure Level for the acute A2

case considering radon-222 over
the inhalation pathway.

Concair = Air Concentration modeled using
AIRDOS EPA, Ci/m3.

FI2 = Inhalation Rate, 0.833 m3/hr.

ED = Exposure Duration for acute case A2, 1 hour.

CF = Conversion Factor, pCV/Ci.

Table 4.13 lists the risks at each exposure point for the acute case A2
determined by using the slope factor methodology. Table 4.14 lists the slope
factor risks at each exposure point for the acute case A2 with the addition of
the probability of silo failure, PA2. These probabilities were listed in Table

4.12a. :

Table 4.13: Total Risks Determined for the Acute Case A2
Based on the EPA Slope Factor Methodology

Exposure Point Risk
Work Force 20x10°°
Resident 9.2 x 10-7
Population 1.6 x 10-9

Fam
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Slope Factor Method (continued)

Table 4.14: Total Risks Determined for the Acute Case A2 - Based on the
EPA Slope Factor Methodology and the Probability of Silo Failure

Exposure Point Risk
Work Force 3.5x 106
Resident 1.6 x 107
Population 2.9x10-10
isk rization for the Chroni n-222
Risk Coefficient Method
The final case examined in this investigation are the risks associated
with the ongoing radon emissions from the K-65 silos. This case is not

based on silo failure, but rather on the fact that radon-222 is emanating
from the silos, primarily the dome, on a daily basis. Equation 4.11
illustrates the risk calculation for the chronic case using the risk coefficient
method. The subscript q refers to the exposure point.

Riskq =DoseRn-222q X RC (4.11)

Table 4.15 lists the doses for the chronic radon case. Also listed in
Table 4.15 are the risks at each exposure point for the chronic case. Note
that the risks illustrated are annual risks and total risks which were
determined by multiplying the annual risks by the 5 year exposure period.

am 0

1385

4-21



” }
S

Risk Coefficient Method (continued)

Table 4.15: Doses and Risks at each Exposure Point for the Chronic Radon
Case Based on the Risk Coefficient Method
(rem/year) (rem)

Worker 2.57 129 5.14x 104 2.57x103

- Resident 0.21 1.07 4.29x 105 2.14 x 104

Population 1.16 x 103 5.81x 103 237x 107 1.16x 106
Slope Factor Method

The risk characterization of the chronic radon case using the slope

factor methodology is described by Equation 4.12. The subscript q refers to
the exposure point and the EL refers to the exposure level. The exposure
level for the chronic case is defined by Equation 4.13.

Riskq = ELRn-222q X SFinhalation (4.12)
ELRn-222q = Concair x FI2x ED x EF x FO (4.13)

The terms of Equation 4.13 are defined as follows:

ELRn-222q = Exposure Level, pCi.

FI2 = Air Intake Rate, 20 m3/d.

ED = Exposure Duration, 5 years.

EF = Exposure Frequency, 250 days/year or
365 days per year.

FO = Occupancy Factor, outdoors 60% of time, 0.6.

160
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Slope Factor Method (continued)

Table 4.16 lists the risk at each exposure point for the chronic radon
case using the slope factor methodology. These risks represent the EPA's
risk characterization methodology for determining the age-averaged,
lifetime cancer risk from the chronic release of radon over the five year
exposure period. . :

Table 4.16: Total Risks Determined for the Chronic Radon
Case Based on the EPA Slope Factor Methodology

Exposure Point Risk
Work Force 9.1x 107
Resident ' 7.6x 107,
Population 4 4,i x 10-8
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The approach to this risk assessment involved both a probabilistic
risk assessment methodology and a conventional Superfund based risk
assessment methodology. The objective of the investigation was to quantify
the risks for the baseline case and also to quantity the risks associated with
the most probable cases of silo failure. In characterizing the risks for the
cases of silo failure, probabilistic risk estimates were calculated as well as
risk estimates for the more conventional approach which determines risk
based on conditional estimates given a considerable number of assumptions
about the source terms and exposure scenarios.

More specifically, risks were determined for two separate cases of
silo failure: 1) the acute failure of the K-65 silos 1 and 2 due to a severe
weather event (Acute Case Al) and 2) the acute failure of the K-65 silos 1
and 2 resulting from the continued structural deterioration leading to the
total release of radon-222 (Acute Case A2). Risks were also determined for
the baseline case of chronic radon emission. Risks were determined for the
three Reasonable Maximum Exposure points for each case of silo failure
and the chronic radon emission case. Two separate risk characterization
methodologies were utilized in the determination of the risks for each case
of silo failure and the chronic case as well. The first risk methodology
analyzed was termed the risk coefficient method (RC) and was based on the

effective dose equivalent risk factor of 2 x 10-4 risk per rem of exposure. The
second risk method investigated was the Environmental -Protection
Agency's carcinogenic slope factor approach- for radionuclides.
Radionuclide slope factors are characterized as best estimates (maximum
likelihood estimates) of the age-averaged total lifetime excess cancer
incidence per unit intake or exposure.

Table 4.8 lists the risks determined for the acute case Al based on the
EPA slope factor methodology. A lifetime excess cancer incidence risk of 3

x 10-3 is shown in Table 4.8 for an individual of the work force. This means
that under the exposure assumptions of the acute Al case an individual of
the work force has 3 chances in 1000 of developing cancer in his or her
lifetime. Similarly a resident under the exposure assumptions of the acute
Af} case has 1.4 chances in 10,000 of developing a cancer in his or her
lifetime.

Table 4.13 lists the risks determined for the acute case A2 based on
the EPA slope factor methodology. A lifetime excess cancer incidence risk
of 2 x 10-5 is shown in Table 4.13 for an individual of the work force. This
means that under the exposure assumptions of the acute A2 case an
individual of the work force has 2 chances in 100,000 of developing cancer in
his or her lifetime. Similarly, a resident under the exposure assumptions
of the acute A2 case has 9.2 chances in 10 million or roughly 1 chance in 1
million of developing a cancer in his or her lifetime.
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Finally, Table 4.16 lists the risks determined for the chronic radon
case based on the EPA slope factor methodology. A lifetime excess cancer
incidence risk of 9.1 x 10-5 is shown in Table 4.16 for an individual of the
work force. This means that under the exposure assumptions of the
chronic radon-222 case an individual of the work force has 9.1 chances in
100,000 of developing cancer in his or her lifetime. Similarly, a resident
under the exposure assumptions of the chronic radon case has 7.6 chances
in 10 million of developing a cancer in his or her lifetime.
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5.0 DISCUSSION OF UNCERTAINTY

The quantification of uncertainty is a process by which a measure of
the confidence of the results can be weighed against the wide range of
possible outcomes of a particular event or series of events. This section will
provide where possible both quantitative and qualitative results of the
uncertainty analysis associated with the failure potential and consequences
of failure of the K-65 silos.

This section discusses the inherent problems and limitations with
the data and models used in the risk assessment. The problems and
limitations are due to difficulties in data collection, record keeping,
modeling, and any number of other areas. These limitations lead directly
to a lack of confidence in the final results. The evaluation of these
limitations and confidence problems is covered by the more general topic of
uncertainty analysis. This analysis should be performed on both a
qualitative and quantitative level. The ability to conduct the uncertainty
analysis is also in part limited by the limitations and problems that created
the uncertainties in the first place. In the situations where little or no data
is available the uncertainty in the results is quite large and furthermore
the ability to evaluate the uncertainty on a quantitative level is limited.

The uncertainty analysis associated with this risk assessment is
primarily on a qualitative level. The uncertainties in the data and analysis
associated with the probability calculations are much easier to quantify
than for instance the uncertainties in the source term estimates. The
intent of this section is to present the general qualitative uncertainties of
this study. These uncertainties are presented for each phase of the risk
assessment project from the evaluation of the structural integrity and
calculation of failure probabilities to the final stages of the risk estimates.

n i In Sil ral In

The structural integrity of the silos was evaluated using previous
reports, of studies performed on the silos, by Both Camargo Associates
Limited and Bechtel National Incorporated. The data available from these
previous studies was derived from both destructive and non-destructive
testing. The use of this data has induced a certain amount of uncertainty
in the probability of failure due to a number of factors. The Camargo study,
which provided the data used for determining the decay rates, was finished
prior to the addition of the foam cover or the wood and steel protective
covering in the center of each silo. These additions therefore could not be
considered in the probability estimates of dome failure. The uncertainty
imposed by the omission of these additions can be evaluated on a qualitative
level by addressing the physical nature of the degradation process and the
critical loadings of the silo structure.



LA

The results of both the Bechtel report and the Camargo study showed
that the structural integrity of the silo dome structure was not sufficient to
provide any estimate of life expectancy. The results also showed that the
dead load capacity of the dome was small and was subject to failure from
any significant additional dead or live loads. Taking this information into
account the additional protective measures made to the silo domes can be
considered to have a negligible affect on the structural integrity. The ability
for these modifications to prohibit or at least retard the weathering process
however is more difficult to address.

Clearly there is a degree of uncertainty in this area, however, the
magnitude of the effect on the probabilities is expected to be small due in
part to the time frame with which the modifications were made. The silos
were nearly 30 years old by the time :the foam covering and the protective
wood and steel section was added. Considerable weathering and wear had
taken place by this time. The additional modifications will only retard the
weathering processes on the outside of the structure. Since the silo is not
an airtight structure air is permitted to be exchanged between the inside
and the outside. This exchange process will continue to degrade the dome
from the inside. Given the above discussion the magnitude of the
uncertainty in the probability of failure, due to natural degradation, is
considered to be small.

1 iliti

.The uncertainty analysis associated with the probability of the ..
external 'tornado’ event can be evaluated on both a quantitative and
qualitative level. The errors and uncertainties are basically quantified
when the statistical analysis is performed on the data. The probability
distributions used to represent the data have confidence intervals (as
defined by the standard deviation) and the goodness of fit tests, to determine
just how well the data used fits the assumed distribution, reflect the
uncertainty in the raw data. Additionally much of the uncertainty in the
raw data is removed in the initial investigation stages by only considering
data which is substantiated and quantified (recall data on tornados was
omitted for these reasons). The net effect of performing the detailed
statistical analysis is to reduce or at least qualify the uncertainties. The
impact of the remaining uncertainties, in the probability of occurrence and
damage of a tornado, had on the final results was considered to be less than
an order of magnitude and is therefore a low' degree of effect.

This part of the risk assessment was considered to contain the
dominate degree of uncertainty. The variation in the data concerning the
concentrations and total inventory of the radionuclides produced a
significant uncertainty. The variation in the total quantity of radium-226
was approximately 36% above and below the best estimate value used in this
study. The other radionuclides had similar ranges of uncertainty. This
level of uncertainty corresponds to an impact of approximately one order of
magnitude in the results (in terms of the exposure).
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The impact from these uncertainties, on the risk assessment, is
expected to be in the range of a single order of magnitude. The
determination of this impact must wait until after the exposure and dose
assessment has been made. Uncertainty in a single radionuclide or a
group of contaminants does not affect the risk in the same way since the
dose received from exposure is dependent on the impact from the
contaminant and the pathway considered.

The model and analysis techniques used to evaluate the magnitude of
the source term released also resulted in significant uncertainties. The
model used postulated a maximum credible release term. The total
quantity of residue material released to the environment was assumed to be
approximately 8.5% of the total volume of waste mass contained in both

silos. This corresponds to approximately 1.65 x 106 pounds of residue
material (1nclud1ng the radioactive contaminants).

The model used to determine this magnitude of release assumed that
a single silo failed catastrophically with the dispersion of a volume of waste
material 1 meter deep (3.28 feet) and 80 feet in diameter. Due to the large
source term and the fact that no credit was taken for inhibitors to the ability
of the wind to distribute the material the overall effect of these uncertainties
is an over prediction of the resulting dose. The effect of the uncertainties
was considered to also be approximately one order of magnitude.

Uncertainty In The Dose Assessment

The total dose received by an individual or a population is the sum of
dose from each pathway and for each radionuclide. The result of the dose
assessment, presented in Section 3.0, clearly indicates that the dominate
contributor to the total dose is via the inhalation pathway and from thorium-
230. The impact of the uncertainties of the source term as well as the
uncertainties in the dose calculations on the overall risk can be
summarized by addressing the variation in the dose from thorium-230.
Since the uncertainty in the magnitude of the thorium-230 source term was
essentially the same as that of radium-226 (approximately 36%) then the
impact on the risk is also expected to about one order of magnitude
(probably over estimating the dose and therefore the risk).

U ‘ntv In The Risk Esti

The final impact of the error or uncertainty in the basic data, the
modeling, and the analytical techniques eventually alters or produces a
confidence interval for the risks. The impact from each of the stages of the
risk assessment were clearly shown to be non-linear, meaning that the
sum of the uncertainties does not directly affect the risk estimates.

7 B
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6.0 DISCUSSION OF RESULTS

The discussion of results is intended to provide a general perspective
of the overall risk assessment and to facilitate the understanding and
relationship between the different phases of the study. The overall risk
assessment embodied the potential for failure of the silos, the release and
transport of contaminated material, the eventual exposure and dose, and
finally the risk. The risk aspect of the study covers several different areas:
1) the probability of silo failure coupled the consequences of the failure (such
as release), 2) the potential for wide spread contamination, and 3) the
consequences of exposure and dose such as the possibility of latent cancer
incidence. The following paragraphs present the relationship and the
limitations associated with risk calculations covering these three areas.
The accepted risk level from exposure to some quantity of radioactive
material is not directly comparable to accepted risk levels for structural
failure. In order to make a comparison the risks must be based on the
same outcome. In other words the consequences being investigated must
be the same.

In this study there were essentially three outcomes considered in
terms of risk. These were the risk of silo failure, the risk of release of silo
contents, and the risk of exposure to radioactive material. The risk factors
presented in the evaluation of the tornado as a failure initiator represent
the consequences of silo failure due to the occurrence of a tornado. The
range of risk factors presented indicate the risk from varying intensities of
tornados..- In this same manner the risk of a specific release can be
calculated using the event trees exhibited in Section 2.5. 'The event trees
describing the release and the transport,.of the residue material, illustrate
the risk of the specific sequences considered. In the cases presented for the
tornado initiator the probability of each phase of the study was propagated
through to the end. The risks numbers presented describe the probability of
the specific consequences considered, those relating to silo failure, residue
release, and the transport of the residue. These risks do not have the same
basis as the risks associated with the exposure to radioactive material. The
risks associated with exposure and dose estimates relate directly to the
possibility of latent cancers in the exposed population (or individual).

Attention to the different basis is recommended when working with
the various risk estimates. The USEPA considers as an acceptable risk

level the value of 1 x 10-6 representing the chance of an induced cancer
incidence as a result of exposure to above background radioactive sources.
This risk is based on radioactive material present in the environment. The
acceptable risk levels associated with the failure and the resulting dose
need to be established. The numbers presented in Section 4.0, incorporating
the risk of silo failure with the risk from exposure, are intended to show
that the overall probability of the entire scenario is small. In other words
since the probability of an F5 tornado event is small as compared to the that
of degradation failure then the significance of the tornado as an initiator is
reduced. '
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Further comparison of the probabilities or risk estimates of the
initiators with the risk estimates based on the dose is made by examining
the overall scenarios considered. There were essentially three exposure
scenarios evaluated and they relate directly to the release potential. The
three scenarios were further subdivided as to exposure into acute and
chronic. There were two acute cases and just one chronic scenario.
Certainly other chronic scenarios could have been examined which would
relate to the presence of lead, polonium, and bismuth in the soil or as a
result of decay of radon released. These additional scenarios were found to
either be insignificant contributors to the overall dose or were taken into
account in the dose resulting from inhaled radon.

Evaluating the three exposure scenarios as was done in Sections 3
and 4 provides insight to the principal dose contributors. The magnitude of
the resulting dose can then be used as a basis for comparing the various
risk estimates. This is done with the tornado event and the acute Al
release as compared to the chronic radon release and exposure scenario.
The resulting dose from the acute Al case are on the average an order of
magnitude higher than those for the chronic radon case. The magnitude of
the dose is used as the first indicator for the comparison of risk. At this
level of evaluation the perception of near equal risks can be misleading.
The next stage should consider the likelihood of these doses. In the case of
the chronic emission of radon the likelihood of receiving some dose is near
unity. The likelihood on the other hand of receiving the dose associated
with the acute Al scenario is extremely remote. _

The comparison -of the risks is then placed on two levels
simultaneously one with respect to the magnitude of the dose and the other
with the likelihood of exposure. To eliminate one of these scenarios
(chronic versus acute Al) based only on one of the two comparison levels
equates to eliminating a significant criteria without justification. The
commercial nuclear power industry accepts as a reasonable risk level of 1 x

10-7 for a reactor meltdown over the life of the plant. This risk level is
comparable to the USEPA level for latent cancer from exposure to radiation.
The magnitude of the dose in the case of a reactor meltdown is extremely
small, as evidenced from the incident at Three Mile Island. The
comparative risk estimate for this scenario would have been on the order of

1 x 10-14, This risk is comparable to the scenario of high dose resulting
from the acute A1l case coincident with the low probability of occurrence.

The results of this study show the complexity and the uncertainty in
evaluating the risks associated with failure, release, and dose. In each
phase of the study the analysis attempted to illustrate both the maximum or
most conservative scenario as well as the wide range of possible outcomes.
In the case of the source term the range of values for the radium and
thorium content varied significantly but the important facet is that there is
an appreciable quantity of radioactive material present. A factor of 2 or
even 3 decrease in the source term (1650 or 1100 Ci of radium instead of
3300) will result in a corresponding reduction in the final risk by a factor of

T q
v, Y, 1‘,0.
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2 or 3. This decrease in the source term would reduce the acute Al results
to 0.75 and 0.5 rem to the nearest resident (500 meter exposure point). The
risks would then be within the range of that associated with the chronic
radon release. The net effect on the risk comparison, however would not
change significantly due the overall risk estimate.

A similar situation exists when considering the transport and
exposure of the radon as compared to the potential for release and transport
of the residue material in the acute case Al. There is significant
uncertainties involved with the calculation of the transport factors.
AIRDOS was used to estimate the transport of both the residue and the
radon. The choice of the most conservative stability class (Pasquill Category
- F) was made in order to conservatively estimate the total impact. The use
of A through E stability classes instead -of F decreases the total dose by less
than an order of magnitude. Recalculation using another stability class
does not result in increased certainty or validity. The perspective remains
the same in terms of the magnitude and significance of the failure
potential, the release of residue material, and the resultant doses.

The results of this risk assessment clearly show that the total risks
for the scenarios considered indicate the significance of the threat of release
and exposure from the material in the K-65 silos. The chronic radon
emission and the potential for the acute release of the radon contained in
the head space are probably the more important since the likelihood of these
events is either one or close to one. The acute release of residue material
has a sufficiently small probability of occurrence that the risk can be
considered to be the lesser of the three scenarios but is by no means
insignificant. The risks posed by the other radionuclides (radon daughters)
were found to result in sufficiently low doses that the scenarios could be
eliminated.
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Appendix A

The following pages contains both input and output from the
AIRDOS code obtained as part of the modeling of the chronic radon release
from the K-65 silos located at the FMPC. The first page Attachment 1
delineates a typical set of input data used. The remaining pages
Attachments 2 and 3 lists the output concentrations for each specified
distance and for each of 16 principal directions.
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Input data for the AIRDOS modeling of chronic radon release

OPTION
&OPTI OPTION=1,1,,0,0,,,0,0,LIPO=1,NSTB=2,TSUBB=1.0,GSFAC=0.2 &END
GRID
&GRID NRL=2,NRU=16,IDIST=25,50,100,200,250,300,350,
400,450,500,750,1000,1250,1500,2000,2500 &END
PLUME RISE
&PLUM PR=0.0 &END
METEOROLOGICAL DATA
&METE LID=5.0,RR=102,TA=285.3 &END
PHYSICAL STACK DATA
1
&PHYS PH=0.0 &END
WIND FREQUENCY DATA
STAR
DEFAULT
RADIONUCLIDE DATA
1
&RADI NUC='RN-222',REL=650.0 &END
MODIFICATIONS OF NUCLIDE DATA
1 .
&MODI NUC="RN-222', LAMSUR=5 48E-6,SC=1E-9,VD=1.8E-7,VG=0 &END
AG DATA _
&AGDT FV=7.6,0,92.4,FB=0.8,0,99.2,FM=0,0,100 &END
AG ARRAYS
FILE 23FARMA.DAT
SKIP 5
USER
(1615)
(8F10.0)
POPULATION ARRAY
FILE 24POPA.DAT
SKIP 3
USER
(8(19,1X))
COMMENTS
TEST RUN OF FMPC CASE OF RADON RELEASE FROM SILOS
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