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GROUNDWATER ELEVATION AND URANIUM CONCENTRATION
VERSUS TIME GRAPHS

ntains groundwater elevation and uranium concentration versus time graphs for
usters where uranium values are above the background level. The graphs contain

a for the 2000, 3000, and 4000 Series wells and total uranium concentrations from
samples collected from those wells. The maps are presented in order of location number.
Appendlx C contains the tabulated groundwater elevation data. Appendix E contains the tabulated
groundwater quality data, and Appendix L contains the groundwater uranium concentration maps.
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GEOTECHNICAL PROGRAM: ISSUES 3 AND 5

ins the results of Issues 3 and 5 of the FMPC RI/FS Geochemical Program.
gned to establish whether sediment and subsurface soil beneath the Paddys Run and
all ditch represent a past, continuing, or future source of uranium to groundwater.

of Issue 5 was to estimate a uranium distribution coefficient (Kd) for the Great Miami
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P.1.0 INTRODUCTION

_ d to evaluate potential uranium sources to the underlying aquifers and provide geochemical
 parameters for a three-dimensional model of groundwater flow and radionuclide transport.
i ific modeling data on the physiochemical processes that could

Recognizing the need f
affect radionuclide mi;
RI/FS Work Plan as |

attenuation, a geochemical testing program was included in the
ibsurface Soils Sampling Plan. The geochemical program

. uranium, differential leaching of uranium, total cation exchange
hable iron and manganese, and grain size on about 40 subsurface

capacity, total organici 2ach
solid samples from three stratigﬁpﬁic horizons below the FMPC. The purpose of the geochemical
testing program was to quantify chemical parameters on aquifer solids which would enhance the

evaluation of radionuclide migration and atten

Subsequent to the submission of the origin ork Plan, a reconsideration of the geochemical

data needs indicated a deficiency in some d analytical work. For groundwater
ygen alkalinity, and laboratory analysis of

calcium, potassium and phosphate, were considered critical additions to the program to satisfy the

samples, a field determination of dissolve

data needs for the geochemical modeling effort. For aquifer-solid samples, the leachates produced

from the leachable iron and manganese test were split, and one h sample was retained

for total fluorimetric uranium analysis. Each of these addition alytical procedures were

eventually integrated into the geochemical testing program.
Because the groundwater-flow and solute-transport model will ate only the sand and gravel
aquifer underlying the FMPC and surrounding region, contamination reaching the aquifer as a result
That is,
any past, present, or future uranium release from the till will be input to the model as Wi

of vertical migration through the overlying till is dealt with as a source term to th

quantity from each principal source. The role of the geochemical program was expan
account for this model design and served as the focal point to evaluate the source term
model. '

000084
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P.1.2 ISSUES OF THE GEOCHEMICAL PROGRAM
ical program conducted in support of the RI/FS is designed to:

uate past, current and future releases of uranium from several
primary sources to the underlying aquifer

"Develop representative values for geochemical parameters that will be
used to model solute transport in the groundwater

» Do soluble“uraniura“$pills represent a past, continuing or future source of
uranium to groundwater?

» Does Paddys Run and/or the Storm_Sewer Outfall Ditch represent a past,
continuing, or future source of to groundwater?

¢ Do the waste pits represent a
the underlying aquifers?

uing or future source of uranium to

* Should geochemical parame
the sand and gravel aquifer
model?

iclide transport and attenuation in
estimated for use in the solute transport

The first four issues focus on field and laboratory data to estimi] unt of uranium available

from potential sources, while the fifth issue additionally utilizes geochemical modeling and

published literature to quantify a uranium distribution coefficient (¥ e aquifer. The uranium
distribution coefficient is defined as the concentration of sorbe i‘amum per kg of aquifer solid
divided by the concentration of uranium per liter of ground wate [Kd = (mg/kg)/(mg/ ) = /kg].

This interim report will address Issues Three and Five of the RI/FS Geochemical Program.

P.1.3 ISSUE THREE: PADDYS RUN AND THE STORM SEWER OUTFALL

P.1.3.1 Purpose and Scope
The purpose of Issue Three is to establish whether uranium-bearing surface water has

and/or continues to infiltrate vertically downward through the bottom of Paddys Run
Sewer Outfall Ditch. Additionally, the disposition of this uranium prior to reaching the underlying

sand and gravel aquifer needs to be established. To address this issue, subsurface soils and surface
waters from Paddys Run and the Storm Sewer Outfall Ditch (Figure P-1) have been sampled and

000085
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analyzed to evaluate the retention capability of the soils and the degree of infiltration of uranium-
¢ water to the undérlying aquifer. Surface water samples were analyzed for chemical
: the analytical data used to construct an equilibrium geochemical model that predicts
Zominant wranium specie in the surface water. This information, along with analytical results

ron, manganese and uranium produced from the subsurface soil samples, was used to
the degree of uranium retardation (if any) by the sediment and soil beneath Paddys Run
and the Storm Sewer Outfall Ditch. The analytical results for subsurface soil samples were used to

mnium as it passes through the sediment and soil
quifer (i.e., the vertical distribution of uranium in

y bound up in the subsurface soil samples
.. ded by the sediment and subsurface soil, but has
not broken through to the underlying aquifer)

* Uranium is present in the underlyi
partially or completely broken t|

aquifer solids (i.e., uranium has
to the underlying aquifer)

These cases were evaluated by analyzing rings obtained from Paddys Run and the
Storm Sewer Outfall Ditch for total urani ations are shown in Figure P-1. In
Paddys Run, one boring (P1; 1408) was blaced upstneani just below the Waste Pit Area and K-65
silos. A second boring (P2; 1409) was located in an area considered to be a significant zone of
recharge to the underlying aquifer. The third boring (P3; 1410)_j
with the Storm Sewer Outfall Ditch. These locations were ch
segments of Paddys Run impacted by the flow from the Storm
segments upstream from the confluence.

am from the confluence

to allow a comparison of
ver:Qutfall Ditch and those

In the Storm Sewer Outfall Ditch, the upstream location (S1; 1405) was placed above the spillover
of the storm water retention basin to evaluate the level of uranium retained by an inactive reach of
the Storm Sewer Outfall Ditch. The second location (S2; 1406) is on an existin ion.in the
channel bottom, thought to be the remnants of a small, abandoned settling basin. |
proximal to the easternmost fly ash pile and could serve to account for any associated acts of
fly ash on the Storm Sewer Outfall Ditch and underlying aquifer. A third boring (S3;
located near the confluence with Paddys Run,which accounts for cumulative effects of

) is
ash piles
and/or whether most uranium is lost prior to reaching this point.

PIT/GW/TS.1-2/11-15-90 P-3 000086
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P.1.3.2 Analytical Methods and Field Sampling
“Services (ITAS-Oak Ridge) analyzed surface waters for chemical and radiological

bsurface soils for total uranium. In addition, the parameters Eh, pH, dissolved
tivity, temperature, and alkalinity were measured during the collection of samples.
handling and analysis of subsurface soils and surface waters conformed to the
procedures and conventions established in Revision 3 of the FMPC RI/FS Work Plan and Quality
Assurance Project Plan (QAPP). Modifications to the collection and analysis of subsurface soil
samples were addressed.i ield Sampling and Laboratory Procedure Plan for the Geochemical

Details on the procedures and conventions used for the collection, handling, and analysis of
subsurface soil samples can be found in Revision 3 of the FMPC RI/FS Work Plan and QAPP, and

*  Split-spoon samples were O
from the stream bed surface

ously in six-inch intervals
d gravel aquifer water table.

» Samples were two- to six-inch sections of the split-spoon core.

« If the water table was not detected because of wet subsurface material throughout,
borings were advanced to the following depths:

- P1 (1408) to 24 feet
- P2 (1409) to 20 feet
- P3 (1410) to 20 feet
- S1 (1405) to 34 feet
- S2 (1406) to 17 feet
- 83 (1407) to 9 feet

« Changes in lithology and/or geochemistry took precedence over the
depth-interval sampling criterion (e.g., if iron staining begins at a depth
of 12 feet, a new sample begins at 12 feet).

e The sample log recorded the percent recovery for a given 1.5-foot
interval and any interval where soil was not recovered.

» If the first or second split-spoon interval was refused, the boring was
restarted from the ground surface.

e Samples were bottled Mediately after screening, and no samples were
collected for volatile organic analysis (VOA), regardless of HNu or
organic vapor analysis (OVA) reading.

000087
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« Boring logs emphasized lithology, stratigraphy and geochemical
descriptions.

maximum of eight soil samples from each boring were sent to the
aboratory for total uranium analysis.

amples not analyzed were archived for future use, if necessary.

P.1.4 ISSUE FIVE: PARAMETERS FOR SOLUTE TRANSPORT MODEL

estimate a uranium distribution coefficient Ky for the sand and
chnical approach to satisfy this objective, the following

The purpose of Issuei
gravel aquifer. In de
assmhptions were ma

e The application of the solute transport model is limited to the sand and
gravel aquifer.

» The relatively uniform character
imply related published inform
' site-specific, laboratory-attenu

of the sand and gravel aquifer
d provide Ky values without
S.

tailed consideration in the
for uranium is the focus of this

e  Only uranium is currently
solute transport model, and.
issue.

¢ Ky valug
ifer. The first method
equilibrium model (EQ3NR;
information was to be

‘Two methods were proposed to determine a uranium K, value

relied on analytical data from groundwaters as input to a geoc
Wolery 1983) to predict the dominant uranium species in solu
combined with mineralogic data on the sand and gravel aquife
data compared to results of published K studies. A second m
independently the uranium Ky by conducting laboratory sorption studies with the sand and gravel
solids.

the two sets of site-specific
was proposed to evaluate

The first method was modified to exclude mineralogic identification of aquifer sol
geochemical modeling and aquifer-solid analyses indicated that the dominant uranium
UOZ(CO3)3'4, a negatively-charged specie that would not exhibit significant sorption o
minerals with high cation-exchange capacity. To resolve this problem, the analytical
leachable iron were used to estimate the amount of amorphous iron (which has a strong affinity for
. negatively-charged complexes) that could be present as coatings on clay minerals and along
fractures in the aquifer. Using these estimates, and a published study on uranium sorption by

PIT/GW/TS.1-2/11-15-90 P-5 0000E8
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amorphous iron oxyhydroxide, empirical calculations were carried out to derive an apparent uranium

A cited above has not been carried out at this time. However, an alternative

s substituted to maintain two independent calculations of the uranium Ky value. Using
and uranium analyses of groundwater, a Ky was calculated directly from the uranium concentration
in the solid (after a i
(mg U/L groundwater

background levels) and groundwater Ky = (mg U/kg solid)/

P.1.4.2 Analytical M
ITAS-Oak Ridge performed the i

chemical and radiological analyses of groundwaters. Field parameters were measured on all

rential leaching/total uranium analysis of aquifer solids and the

groundwaters. To assist in determining the redox potential (Eh) of groundwater, 16 wells were

tal U - U*Y. U™ and U™ are defined as the

sampled and analyzed for U and total U (U
sum of all uranium species for each oxidation The vt and total U analyses were done by
United Nuclear Corporation Geotech Labor: 'C. Geotech), Grand Junction, Colorado. In
support of the partitioning studies, IT-Ex carried analyses on the aquifer solids for total

cation-exchange capacity, total organic carbon, grain size, and leachable iron and manganese. A

leachate split was sent to ITAS-Oak Ridge for total U analysis.

§nformed to the
Work Plan and Quality
eaching analysis of aquifer

The collection, handling, and analysis of aquifer solids and gro

procedures and conventions established in Revision 3 of the
Assurance Project Plan (QAPP). Detailed procedures for the d
solids, and U** and total U field sampling and analytical meth
Field Sampling and Laboratory Procedure Plan for the Geoche
U™ and total U field sampling procedure appears below, and analytical methods are discussed in
Chapter P.2.0.

given in the appendix of the
| Program. A summary of the

P.1.4.2.1 Field-Sampling Procedure for U* and Total U
Groundwater samples were collected for total U and u* analysis to estimate independ
of the groundwater; The U** in solution is complexed with  cerium and precipitated w.
hydrofluoric acid. U*is determined by the difference of total U and U™, The procedure is
summarized as follows:

y the Eh

» Approximately 250 milliliter (ml) of sample is collected after filtering
the groundwater through a 0.45 micron filter.
000O0ES
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e The sample is split and half is acidified with HNO; to
H < 2 and shipped to the laboratory for total U analysis.

ml of the remaining filtered sample is placed into a 125-ml plastic
ttle, and 0.125 ml of cerium solution is added to the sample and
ixed well.

1.25 ml of reagent grade HF is added to the solution, and the solution
is mixed thoroughly and cooled for 15 minutes in a cooler.

e The sample is removed from the cooler, shaken, and filtered through a
0.1 mics 1l

rinsed three times with distilled water and the rinse
ugh the 0.1 micron filter.

« The filter funnel and filter paper are rinsed with distilled water prior to
placing ‘the: filter paper in a container for shipment to the laboratory,
where it is analyzed for U .

P.2.0 ANALYTICAI THODS AND RESULTS

P.2.1 ANALYTICAL METHODS

Standard analytical methods (e.g., Meth
4-79-020) were used for the analysis of &
here. Subsurface soils and aquifer solids were analyzed by gamma spectrometry for total uranium.

Analysis of Waste and Water; EPA-600
ace waters and groundwaters and will not be discussed

Aquifer solids were also subjected to leaching tests to determine the amount of leachable iron,

manganese, and uranium. Leachates recovered from these tests zed for iron, manganese,

and uranium by standard procedures (e.g, atomic absorption, in
fluorimetry). Some of the analytical methods employed for su
site-specific applications and are summarized below. Detailed ratory procedures for the leaching
tests can be found in Revision 3 of the FMPC RI/FS Work Plan, the Work Plan for the
Geochemical Program, and the Field Sampling and Laboratory Procedure Plan for the Geochemical

Program.

coupled plasma or laser
soils and aquifer solids are

P.2.1.1 Gamma Spectrometry

Solid samples analyzed by the gamma spectrometry method are generally 500 gram sp]
crushed and homogenized material. After sample preparation is completed, the sample
in containers that will yield an analytical geometry identical to that of standards used to calibrate
the instrument. The standards have known concentrations of each uranium isotope that emits
gamma by radiation and are used to construct a calibration curve prior to sample analysis. Most
instruments used for this procedure employ sophisticated software that contains a complex algorithm

PIT/AGW/TS.1-2/11-15-90 P-7 000030
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to account for sample instrument geometry, sample weight, the coefficient of absorbence for gamma

sample material, and interfering gamma radiation from other radionuclides present in
sample geometry and weight are given as input parameters prior to analysis, and
alculates the total uranium concentration in the sample based on the contribution of
“isotope. Output from the algorithm is the total uranium concentration in ug/g (ppm).

P.2.1.2 Differential Leaching Tests for Uranium
The differential leaching, istinguish between easily mobilized and available uranium (i.e.,

) from insoluble uranium (i.e., U in mineral lattices such as

groundwater environment. The four leaching tests are designed

e  Uranium?#preésent ne-grained carbonate minerals (i.e., pore cement)

e Uranium present as sorbed species on clay minerals and amorphous iron
and aluminum oxyhydroxides

» Uranium present as sorbed spec.
wastes

ithin organics in the soils or

e Uranium present in amorphou:
U308

xide phases such as UO, or

The uranium of most concern is probably bound on amorphous iron and aluminum oxyhydroxides
that coat clay minerals, or is present with the organics and am
(if present) could be available for transport through the aquifer
lattices of clay minerals, apatite, monazite and zircon is naturall

i e phases. This uranium
um which is present in the

urring and generally immobile,
and can be considered representative of the background concen level.

The four-step extraction technique can be summarized as follows:
» Sodium acetate is used to digest the fine-grained carbonate minerals
» Disodium ethylenediaminetetracetic acid (EDTA) is used to strip so
uranium from clay minerals, and amorphous iron and aluminum
oxyhydroxides

» Hydrogen peroxide is used to digest organic material

» Nitric acid (1:1 with distilled H,O) is used to dissolve amorphous solids
and oxides of uranium

000051
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At each step, the reagent is agitated with the sample and the solution fraction (leachate) was
ntrifuging. The leachates were analyzed for total uranium by laser fluorimetry.

ng Technique for Iron and Manganese

technique recovers iron and manganese from amorphous-oxyhydroxide coatings on

hydrochloride. The solid is mixed with the leaching solution, agitated, and the leachate recovered

by centrifuging. Unlike. ntial leaching procedure which recovers "historical” uranium

fracture coatings of hematite or pyrolusite). The two uranium components cannot be distinguished
in the analysis, and the background component (i.e., uranium in mineral lattices) must be estimated
from aquifer solids which are known to be inated.

P.2.2 ANALYTICAL RESULTS
Analytical results for samples of subsurfa
are given in Attachment P.I. Groundwate

waters, aquifer solids, and groundwaters
ported in Attachment P.I are limited to the
samples chosen for geochemical modeling. The analytical results for uranium on subsurface soil

alyses

and surface water samples obtained from Paddys Run and the Storm Sewer Qutfall Ditch were used

to evaluate a source term for these drainages (Issue Three). ults on groundwaters and

aquifer solids were used to calculate apparent uranium distribu ients for the sand and

gravel aquifer (Issue Five).

P.2.2.1 Issue Three
Analytical results for total uranium were obtained on subsurface soils and surface waters in Paddys
Run and the Storm Sewer Outfall Ditch to evaluate a source term for these draina

P.2.2.1.1 Subsurface Soils
Samples of subsurface soils obtained from Paddys Run and the Storm Sewer Outfall
(Figure P-1) were analyzed for total uranium by gamma spectrometry. The samples

primarily of well-graded sand and gravel with horizons of poorly-graded sand and silty clay.
Borehole depth ranged from 20 to 24 feet and 9 to 34 feet, respectively, in Paddys Run and the
Storm Sewer Outfall Ditch. The deepest borehole in the Storm Sewer Outfall Ditch (S1; 1405)
penetrated an iron- and manganese-stained horizon between 25 and 30 feet below the surface, which

000032
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was interpreted as a possible redox zone. Uranium results for six of the sampling sites are
Figures P-2 and P-3.

covered from Paddys Run (Figure P-2) had total uranium concentrations of less than
pm). However, significant 2-sigma counting errors (generally > 50 percent and up to
100 percent of the reported value) precludes any discussion of significant variation in the uranium
concentration with depth (i.e., no variation observed within the range of 2-sigma counting errors;
Figure P-2). Additio

separate components

nium concentrations in these soil samples, it is not possible to

common rocks are:
Krauskopf 1979). Si
of 1 to 3 ppm in the

ermors make discussion of uranium variation

e soil profiles from Sites S1 (1405) and S2
-greater than 3 ppm). Site S1 (1405) is most
id"15 located above the spillover for the storm
water retention basin. Soil samples recovered from
concentration from 10 to 4 ppm within the top 4 feet of soil (Figure P-3). The high uranium
concentrations in the upper 3 feet of this boring coincide with a clay-rich horizon between 0.5 and

1 to 10 ppm (Figure P-3). Large 2-sigma co
with depth equivocal for Site S3 (1407). Ho:
(1406) show uranium variation that is signi
proximal to the Fernald compound (Figu

s boring indicate a decrease in the uranium

2 feet, suggesting uranium may have sorbed onto the clay (see

Site S2 (1406) is located near a fly ash pile and in a depressio ch*“may be an abandoned

settling basin. Very little (if any) soil is present at Site S2 (1 and the boring penetrates the

top of the sand and gravel aquifer. The uranium profile from ‘site indicates uranium

concentrations of 6 to 8 ppm over the interval of 5 to 15 feet (background uranium is less than 3

ppm). Because the soil present at this site is negligible, the profile indicates "histori

present in the aquifer.

P2.2.1.2 Surface Waters
Analytical results for three surface water samples (W-7, W-11, and ASIT003 sampled :
May 14, 1989 are given in Attachment P.I. Samples were collected in each flowage abové the
confluence of Paddys Run and the Storm Sewer Outfall Ditch (W-11 and ASIT003, respectively)
and below the confluence (W-7; Figure P-1). The surface samples are oxygenated waters (Eh
approximately 450 mV) with a pH of about 8.5 and their solution chemistry is dominated by
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HCO; (> 200 mg/L) and Ca (> 70 mg/L), reflecting the interaction of these waters with carbonate
urface. Uranium concentrations in the surface water samples ranged from 0.002
.015 (W-07) mg/L.. The sample obtained from the Storm Sewer Outfall Ditch

a uranium concentration similar to background levels established for Paddys Run

mg/L), using site-specific environmental monitoring data. Samples recovered from

concentrations above the background level maximum, indicating these surface waters might

contribute uranium ing aquifer by vertical infiltration. Modeling results for uranium

speciation are prese :P.3.3.

P.2.2.2 Issue Five :
Analytical results for jotl uranigm
an apparent distribution coefficient [Ky = (mg U/kg solid)/(mg U/L groundwater)] for the sand and

gravel aquifer. Additionally, geochemical modeling on the speciation of uranium in groundwater

was combined with analytical results on leac on 10 derive empirically a distribution

coefficient.

P.2.2.2.1 Aquifer Solids

Thirty-one subsurface samples consisting ‘of gravel, sand, silt and clay were analyzed for leachable
iron, manganese and uranium, total organic carbon, total cation exchange capacity, and grain-size
variation. Thirteen of these samples were also utilized for total uranium analysis (6) and
differential-leaching uranium analysis (7). Analytical results a ttachment P.I and

illustrated in Figures P-4 to P-6.

Figure P-4 is a plot of leachable iron, manganese, and uranium against the particle size of the
sample. Based on the sieve analysis, two sample populations : (1) silt plus clay greater than
50 weight percent and (2) silt plus clay less than 25 weight percent. The leachable fraction of

iron, manganese, and uranium in the majority of aquifer solid samples is not a function of the

particle size, because the range of values for the metals is similar for the two samp
This observation suggests that the majority of iron and manganese solids accessed by
groundwater are present as amorphous- or crystalline-oxyhydroxide coatings along fra

fluid-flow path, rather than as detrital grains or surface coatings on the aquifer particl
hypothesis is consistent with sample preparation procedures which avoided crushing the sample
below its natural aggregated size (i.e., clay minerals were not mechanically disaggregated prior to
the leaching test). '

006034
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Three clay samples in the first population have leachable iron values greater than 2 mg/g,
' ifface coatings on clay minerals and/or complexauon 001500 with organic-carbon (see

: the leachable fraction of iron in these samples. A lack of correlation between the

e iron and manganese versus total uranium (inset Figure P4) indicates that:

“Sorption of uranium on amorphous iron- and manganese-oxyhydroxide
coatings may not be occurring in the aquifer.

» The leachable iron and manganese in the solids is primarily from the
digestio ine oxyhydroxide phases.

Results for total org us grain size are illustrated in Figure P-5. As in Figure P4,

there is no correlation: * total organic carbon content of the aquifer solids and the weight

percent of silt and cl e. The majority of samples, irrespective of silt and clay

content, have total organic carbon values below 8 mg/g. Two samples obtained from a major clay

interbed in the sand and gravel aquifer contain 15 to 16 mg/g of total organic carbon. These two

samples are coincident with the highest leac
high organic carbon content to high leachabl¢
‘ adsorbed on organic materials in the clay i

n values in Figure P-4. The correlation of
ues implies iron is associated with or

and P
solids is a strong function of the silt and clay content (Figure P-6). Samples containing less than
25 weight percent of silt and clay have a total cation exchange capacity (CEC) of less than

0.04 meq/g, whereas those samples with greater than 50 weigh ; :
to 0.28 meq/g.

In contrast to results presented in Figures e cation exchange capacity of the aquifer

: and clay have CEC up

P.2.22.2 Anomalous Uranium Results
Thirteen aquifer-solid samples were chosen for total-uranium analysis by gamma spectrometry.

Seven of the 13 samples were selected for a differential leaching procedure designed to stnp
uranium sequentially from the solids using a series of four progressively stronger

(see analytical methods in the appendxx of the Field Sampling and Laboratory Proce
the Geochemical Program). Results for the total uranium and differential leaching an :
reported in Attachment P.I and illustrated in Figures P-7 and P-8. It is emphasized hese _
results are anomalous with respect to those obtained previously for total uranium of aquifér solids.

‘ Figure P-7 is a plot of total uranium (ug/g or ppm) versus sample depth for 6 of the 13 samples.
Mean uranium concentrations in these aquifer solids range from about 11 to 16 ppm, but show no
variation within their 2-sigma counting errors. The mean uranium values are about 3 to 5 times

G0G095
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higher than the maximum uranium background level of 3 ppm (based on uranium analyses of

ranium sorption on particles along the flow path
P}ecipitation of uranium solids along the flow path

“The presence of naturally-occurring uranium-bearing minerals (i.e.,
zircon, apatite or monazite) in the aquifer sands

* Problems with the procedures and analytical methods used to determine
tion (see Section P.2.5.2)

Uranium results from al leaching procedure are shown in Figure P-8. The seven

samples analyzed had concentrations of 95 to 150 ppm prior to leaching and, within
their 2-sigma counting changed after leaching. Additionally, sample-to-sample
variation in uranium concentration is not observed within the 2-sigma counting error. These solids
have uranium concentrations 1 to 2 orders of magnitude higher than background uranium

concentrations (see above), and an order of

de higher than the results shown in Figure P-7.
Sorption and precipitation of uranium along f path cannot be responsible for the high
. concentrations in these samples, because th .(analyzed by laser fluorimetry) from the

solids had less than 2.5 ppb of uranium. uranium-bearing mineral apatite, and to a

lesser degree monazite, cannot contribute Significantly to the high uranium concentrations because
they are soluble in nitric acid (used in final leaching step). The results presented in Figure P-8 can
be explained by high concentrations of insoluble uranium-bearing minerals (i.e., zircon) in the
Section P.2.5.2).

aquifer sands or problems with the analytical procedures and

P.2.2.2.3 Groundwaters

Analytical results for groundwater samples used in the geoche
Attachment P.I. These groundwaters were collected from 20 monitoring wells (locations shown in
Figure P-9) during Round 3 (Fourth Quarter, 1988) and Round 4 (First Quarter, 1989) sampling.
The dominant chemical characteristics of the groundwaters include: near-neutral pH values (6 - 8),
Eh values of 50 to 450 mV, HCO; concentrations of 200 to 400 mg/L, and Ca ¢
70 to 200 mg/L. These chemical characteristics suggest the groundwaters are in equilibrium with

modeling appear in

carbonate rocks in the aquifer. Uranium concentrations in these samples vary from 0.
4.38 mg/L, with most modeling samples having concentrations greater than expected fi
waters (i.e., U > 0.0001 to 0.010 mg/L; Hem 1970). Modeling results for the uranium speciation
. are presented in Section P.3.3. '

606636
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P.2.3 DISCUSSION

ntrations in most subsurface soil samples overlap with the range of values reported

k types (i.e., 2-5 ppm) and do not appear to reflect the sorption and/or precipitation
yi‘from infiltrating groundwater. The lack of uranium contamination in the majority of the
soil samples suggests any one or all of the following:

» The soils were not exposed to uranium-bearing water.

. i form of nonsorptive species.

Therefore, the soil profiles from Sites P1 (1408), P2 (1409), P3 (1410), and S3 (1407) may

conform to the first case scenario (Section 1.3.1), which states that if surface waters with high
uranium concentrations infiltrated these soils nuation took place (i.e., the soil profile for
uranium reveals background levels). This
(Section P.3.3, Table P-2), which indicate §

(if any) attenuation of uranium will occur;

upports the speciation results for surface waters
complex UO,(H,PO,), is present and little
: yaters vertically infiltrate to the underlying
aquifer. The scenario also supports modeling results which indicate the anionic uranyl-carbonate
species are present if amorphous iron oxyhydroxide is absent (i.e., no sorption on the soil particles).

Exceptions are Sites S1 (1405) and S2 (1406). At Site S1 (1
the upper 2 to 3 feet of soil suggest uranium sorption and/or

values up to 10 ppm in
n may have occurred.
rm“Sewer Outfall Ditch, and

in agreement with known

Site S1 (Figure P-3) is proximal to the discharge point for the
higher uranium concentrations in these subsurface soil samples
periodic discharges of uranium-bearing waters. The elevated u

um concentrations in the upper 3
feet of this boring are coincident with a clay rich horizon between 0.5 and 2 feet. This observation
suggests that uranium is being retarded by sorption processes in this area. Therefore, this uranium

is a potential source for future releases to the underlying aquifer.

Site S2 (1406) shows slightly elevated uranium concentrations (6 to 8 ppm) over a d

5 to 15 feet. However, this observation cannot be correlated with clay-rich horizons f

soil profile at Site S1, because: little (if any) soil is present at this site. This site is pioximal wa
fly ash pile and may also be situated on the remnants of an abandoned settling basin. Either of
these observations could account for the presence of "historical” uranium in the S2 profile.

PIT/GW/TS.1-2/11-15-90 P-14
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Uranium may be retarded along this profile by sorption onto iron- and manganese-oxyhdroxide
i ich formed along the fluid-flow path, or by precipitation of amorphous uranium

‘ ' The soil profile from Site S1 (1405) supports the second case scenario (Section P.1.3.1), which
states that uranium present above the expected background level is "historical” uranium bound in

the subsurface soil (i.
profile from Site S2

ugh has occurred to the underlying aquifer). However, the

partial breakthrough of uranium to the sand and gravel aquifer
both of these cases, modeling results which predict the dominant
tion P.3.3, Table P-2) support the hypothesis of uranium
sorption on amorphous-irfon- and“atuminum-oxyhydroxide films. Altematively, uranium may be
retarded by precipitation of amorphous uranium compounds.

P.2.3.2 Issue Five

Analytical results for uranium concentratio
differential leaching procedure did not lo
of magnitude larger than background urani

r solids are highly suspect because the

alues in aquifer solids that are 1 to 2 orders
ions. Those samples which did not
undergo the differential leaching procedure had uranium concentrations 2 to 8 times higher than
common rocks, but are also suspect because the differential leaching procedure indicates a lack of
sorbed or amorphous uranium (i.e., all uranium present is within. mi ttice structures), which is
in contrast to uranium results obtained on leachates derived fro;
experiments (see below). Petrographic data on the compositio

although it is unlikely that high concentrations of an insoluble

he iron and manganese

ifer sands are not available,
um-bearing phase such as zircon
would be found to account for the elevated uranium concentrations. The most probable cause of
the anomalously high uranium concentrations is a variation in the standard analytical procedure or

method.

Gamma spectrometry is used to analyze for total uranium in the aquifer solids. TI
method is sensitive to the mass of solid analyzed and the geometry of the sample wi
the detector. Standards used to calibrate the instrument are 500-gram aliquots that are dried and
ground to homogenize the solid prior to analysis. Aquifer-solid samples of 4 to 40 grams were
analyzed without drying and homogenizing the material, and the small sample volumes resulted in

poor geometry configurations with respect to the detector. These deviations from standard

QO06S8
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procedures requires that the analytical results for total uranium in aquifer solids be treated as

total uranium in the leachate fractions produced from the differential leaching
analyzed by laser fluorimetry and results are considered to be quantitative. These

that less than 2.5 ppb of uranium is sorbed onto the aquifer solids, which is in
contrast to uranium values of 33 to 783 ppb obtained from the leachate produced by the iron- and
manganese-oxyhydroxide stripping procedure. Reagents specific to each procedure can account for

the difference in uram i:as the analytical method was identical for all leachates. The

organic and organic particles

e Uranium complexed within amorphous aluminum, iron, or manganese
oxyhydroxides

e Amorphous uranium solids pre the sample

In contrast, the iron- and manganese-oxyhy dure utilizes acetic acid and hydroxylamine

hydrochloride to attack amorphous and ¢ and manganese- oxyhydroxide minerals
(Chester and Hughes 1967). Therefore, ‘the latter proceédure will contain a uranium component
derived from crystallized iron and manganese minerals (i.e., detrital minerals older than the
Holocene), while the former will not. The uranium in the detrital minerals is not of recent origin,
and the concentrations of less than 1 ppm are well below the

shales (Krauskopf 1979).

.7 ppm reported for

Because of the suspect nature of the uranium analytical results
calculated distribution coefficients (Ky) should be interpreted ¢
are useful as an independent check on partitioning estimates based on speciation modeling
(Section P.3.3) and experimental studies (Section P.4.1.7).

aquifer solids and leachates,
usly. However, the calculations

P30 GEOCHEMICAL MODELING

Geochemical modeling of the uranium speciation in surface waters was carried out to st in the
evaluation of the potential source term in Paddys Run and the Storm Sewer Outfall Ditch (Issue
Three), and in groundwaters to support the calculation of the uranium distribution coefficient for the
aquifer (Issue Five). Modeling was conducted with the EQ3NR geochemical code (Ver. 3245;
0000ne3
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Wolexy 1983), which is an industry standard, speciation/solubility code developed by Lawrence
ational Laboratory for use in predicting the behavior of metals, radionuclides, and other
) the natural -environment. The code accesses a data base containing the

roperties of 47 elements, 686 aqueous species, 713 minerals, and 11 gases. This

cautiously. Values for thermodynamic parameters utilized by

the EQ3NR code for
investigators, and the eir results is variable. Personnel at Lawrence Livermore National
Laboratory have quali the thermodynamic data utilized by the code by indicating whether the

data are poor, fair, good; or unceértdin. Uncertain generally indicates that independent workers have

solubility calculations are experimentally determined by many

reached conflicting results for the indicated value and the problem is currently unresolved. All
aqueous-uranium species and uranium minerals_considered in this investigation have thermodynamic
values which have been judged to be good.

Additionally, it must be emphasized that from geochemical modeling of natural

systems are not unique. At best, modeli snapshot of a point in time for the
dynamic natural system. However, modeling studies are useful to establish boundary conditions for
a system, which may enhance the development of remediation techniques and/or the solution to

contaminant problems.

P.3.1 SELECTION CRITERIA FOR GROUNDWATER S
Over 100 groundwater analyses from Round 3 (Fourth Quarter,
1989) were available for modeling. Because of the large num

38) and Round 4 (First Quarter,
of analyses received, selection

criteria were developed to choose samples from the entire spectrum of analyses, thus reducing the
number of analyses to model. All groundwaters with reported uranium concentrations greater than
0.3 mg/L (7 analyses) were modeled. Analyses deemed to be representative of "typical’:local
groundwaters were screened for uranium content, and 14 samples were chosen tha
concentrations of 0.005 to 0.3 mg/L (greater than 50 percent of the samples received
uranium concentrations of less than 0.005 mg/L). Additional criteria focused on anom

reported

atinum
electrode measurements) that were below 100 mV (6 analyses). It is important to reiterate that the

concentrations of calcium, phosphorous, potassium and sulfate, and Eh values (based

selection criteria for groundwater samples used in the geochemical modeling is biased toward those
analyses with high uranium concentrations.

P17 000300
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P.3.2 MODELING ASSUMPTIONS AND CONSTRAINTS
i sults received for surface and groundwaters did not contain values for total dissolved
:and specific gravity (SG). Many results also lacked a reported value for the redox
f the water. Values for these parameters must be included on the input file for the

d were estimated as follows:

TDS was calculated by summing the concentrations (in mg/L) of
analytes that were above the detection limit

¢ SG was assumed to be 1 g/cc, based on the low TDS values

(400 -
- Ehw , the EQ3NR code using the NH,"/NO,” and
0,/H,0. es, and with solubility constraints based on

d uraninite (UO,) saturation (Eh calculations are
Section P.3.2.2)

P.3.2.1 Electrical Charge Imbalances
The 26 water analyses utilized for modeling
percent of the total charge (Table P-1). A
that lic between -5 and +5 percent of the
than -5 percent suggest either errors in th

ectrical charge balances ranging from -27 to +64
of the analyses have reasonable charge balances
; Electrical imbalances greater than +5 or less
. a major constituent or the omission of a
major constituent in the analysis. The of jor constituent will usually cause a
consistent bias (positive or negative) in the electrical imbalance, thus the range of imbalances
observed here suggests random errors in the analyses. A reduced level of confidence should be
placed on those analyses with large electrical imbalances (i.e., those:that:lie outside of the range -5
from the analytical data.

rical imbalances resulting

to +5 percent) and the corresponding uranium speciation calcul,

However, uranium speciation will probably not be affected by
from analytical errors in the determination of calcium, potassi agnesium, sodium, or sulfate,
but can be affected if the phosphorous concentration, alkalinity; of pH is in error (see discussion of

uranium speciation in Section P.3.3).

P.3.2.2 Eh Calculations
Platinum-electrode measurements were not provided with all groundwater analyses and:

redox couples and mineral-solubility limits were utilized to constrain the system Eh.
were calculated with the O,/H,O (770 to 800 mV), NH4+/NO3' (324 t0 350 mV), and
(-120 to -160 mV) redox couples, and by lowering the O,/H5O redox value in increme
solution reached saturation with respect to, first, pyrolusite (MnO2; 575 to 605 mV) and then

' uraninite (UO2; 35 to 50 mV). Eh values bounded by the pyrolusite and uraninite solubility limits

overlap with the range obtained by platinum-electrode measurements in the field (454 to 75 mV).

PIT/GW/TS.1-2/11:15-90 P-18
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The 02/H20 and U+4/U+6 redox couples overestimated and underestimated, respectively, the redox
undwaters. For the 02/H20 couple, the high Eh value may be due to addition of

A during sample collection or the inability of the geochemical code to evaluate the

ic rate of the 02-H20 half-cell reaction. Calculation of the groundwater Eh with the U+4/U+6
values inconsistent with mineral solubilities and platinum-electrode measurements.
“redox values (-120 to -160 mV) indicate concentrations of U are too high. The
hxgh U /U ratios measured in these groundwaters are attributed to the sorption of uranyl species
on iron-bearing colloids (Figure P-10), which comprised a portion of the filtered residue analyzed

¥ Eh range of 50 to 650 mV to determine the effect (if any) of
Eh variation. Results for this test are shown in Figure P-11, and indicate that variation in the Eh

compositions were modeled ov

estimate of groundwaters does not affect the iation results for uranium.

P.3.3 URANIUM SPECIATION
Uranium speciation was investigated in 26 § samples (20 unique wells) and 3 surface
presented in Tables P-1 and P-2.

Speciation results for the groundwaters support calculations to estimate a uranium distribution

water samples. Results for the speciation,

coefficient for the aquifer (Issue Five). Table P-1 reveals that 11 samples had greater than 99
percent of the uranium partitioned into the aqueous specie UO,(HaPO,).
not reported or below the detection limit) had greater than 99
into the aqueous species UO,(CO3);*, U0L(CO5),, and U0
uranium greater than 0.3 mg/L) partitioned the uranium into a

samples (phosphorous
ft "of the uranium partitioned

samples (five with
ination of the above three

species. These results indicate that uranyl ion (U02+2) will fo
with carbonate ion (CO3-2) in this environment, only if the molar concentration (moles per liter) of
uranium is greater than one-half the molar concentration of phosphorous (i.e., [U] > 0.5[P]). When
uranyl-carbonate complexes form, U02(C03)3'4 is the dominant specie in these g

neutral and slightly alkaline pH. Three surface waters were chosen for uranium-specia
to evaluate the potential of introducing uranium to the underlying aquifer by vertically
surface waters (Issue Three). Analyses for these three samples reported uranium con
0.002 to 0.015 mg/L, with phosphorous ranging from below the detection limit
< 0.02 mg/L to 0.16 mg/L (Attachment P.I). Because of the relatively low uranium concentrations
in these surface waters, all uranium was partitioned into the neutral phosphate complex in waters

which contained detectable amounts of phosphorous (Table P-2). Surface waters without reportable

PIT/GW/TS.1-2/11-15-90 P-19 0003082
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phosphorous concentrations (i.e., W-11; Table P-2) partitioned uranium into the anionic carbonate

ts on the feasibility of recovering uranium from groundwaters by anion-exchange
:8how 90 percent of the uranium is recovered by this method (personal communication,
Khan 1989). The experimental results are in good agreement with the majority of modeling results
(i.e., negatively-charged uranyl-carbonate species). However, modeling results also indicate that

uranium is complexed UO,(H,PO,), specie in 11 of 26 groundwaters.

Several factors coul
(measured as total P ¢
which would reduce the:
UO,(POy), formed. Organic-phosphate speciation was not modeled because thermodynamic data

e observed sorptive behavior of uranium. First, phosphorous
to phosphate) may form organic complexes in the groundwaters,
ctivity“oF the phosphate complex and decrease the amount of

are limited to inorganic-phosphate complexes, which results in UO,(PO,), concentrations that may
for UO,(HPO4), may not be correct (see
of nranium into this specie cannot be ruled out.

be overestimated. Second, the association cot

3.3.1.1 below); therefore, significant partitio
The presence of UO,(HPO,), in the gro
anion exchange. Finally, the UO,(H,PO
H,0) that, despite the neutral charge, result in retardation along the flow path in an anion-exchange

uld be consistent with removal of uranium by
exhibit weak dipole properties (similar to

column.

P.3.3.1.1 Data Base Integrity
The speciation results for surface and groundwaters indicate th yl ion has a strong affinity
to form an unchanged complex with phosphate. A 002500-ph concentration of 0.02 mg/L
(the limit of detection) would allow up to 0.071 mg/L uranium: o be complexed as UO,(H,PO,), .
Since the majority of analyses received (not modeled) have uranium concentrations less than 0.071
mg/L and phosphate values greater than 0.02 mg/L, the modeling results suggest carbonate
complexation may not occur in these groundwaters. . However, the speciation res

groundwaters containing phosphorous appear to be in conflict with published stu .
Tripathi 1984; Koss 1988), which indicate. UO—;2 will form carbonatge complexes in b;
waters at neutral pH. In addition, studies by Moskvin et al. (1967), and Dongarra and
(1980) concluded that the dominant uranyl-phosphate complex in natural waters of ne
single-protonated, negatively-charged U02(HPO4)2'2 complex, which is in contrast to the neutral,
double-protonated UO,(H,PO,4), specie predicted by the EQ3NR code.

000163
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To resolve this apparent discrepancy, the thermodynamic values for the aqueous uranium species
study were checked to ensure data base integrity. Association constants for

HPOg;: (log K = 45.24; Baes, 1956; Tripathi, 1984), UO 2(C03)2'2 and UOZ(CO3)34

) and 21.70, respectively; Scanlan, 1977; Tripathi, 1984) were verified to be correctly
ihexmodynamic data base However, single-protonated uranyl-phosphate complexes

> PO,) and U02GIP04)2 were not present in the thermodynamic data base. Lawrence
Livermore National Laboratory removed single-protonated uranyl-phosphate complexes from the
EQ3NR data base as a result of the conclusions reached by Tripathi (1984). Tripathi argued that
the studies of Moskv
UO,(HPO,),? (assoc
between 4 and 8 are
= 0 to 4) and uranyl

the single-protonated tranyl-phospfiate complex from the data base was hypothesized to be

and Dongarra and Langmuir (1980) who concluded that

18.3) is the dominant specie in oxygenated waters with pH
ause their experiments were carried out with acidic solutions pH

with H,PO, and H;PO, was not considered. The omission of

insignificant because of the much larger association constant for UO,(H,PO4), relative to
U02(HP04)2'2 (log K = 45.24 versus 18.3, respectively). This hypothesis was verified by

reinserting the thermodynamic data of Dong Langmuir (1980) into the data base and ﬁndmg

no change in the speciation after rerunning undwaters.

P40

Partitioning of uranium between aquifer solids and groundwater was evaluated to calculate an
apparent distribution coefficient [Ky = (mg U/kg solid)/(mg U
sand and gravel aquifer. This task was carried out to meet th

ter)] for uranium in the

jjectives of Issue Five. Uranium
adsorption was evaluated by:

1g the EQ3NR
ut to published Ky

*  Modeling the uranium speciation of groundwater
geochemical code and comparing the speciation
studies

» Calculating distribution coefficients based on uranium concentrations
reported for archived aquifer solids, leachates, and groundwaters.

P4.1 SPECIATION AND EXPERIMENTAL STUDIES
Speciation results presented in Section P.3.3 indicate the expected uranium complexes
groundwaters recovered from Fernald monitoring wells are dominantly U02(C03)3'4
U02(CO3)2'2, and UO,(H,PO4), when phosphorous is preserit. The modeling results are in good
agreement with studies by Femri et al. (1981), which show uranium is present as the U02(C03)3'4
complex in carbonate solutions between pH 7 and 12. Neutral aqueous species (e.g.,

000104
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U02m2P04)2) are not expected to sorb appreciably (perhaps slightly if the molecule has a strong
consequently, are not considered in experimental studies. Therefore, this discussion
adies which have addressed the adsorption of uranium from carbonate solutions.

.1 Adsomption of Uranyl-Carbonate Species by Montmorillonite

d Sparrow (1983) studied the adsorption of uranium using a montmorillonite and

carbonate solution mixture. A simple solution was prepared by adding 4 g of Na,CO, and 84 g
of UO,(NO3),.6H,0 to one liter of distilled water, yielding C03 and U concentrations of,

3R ivle/L) and 3.97 g/L (0.017 mole/L) at a final pH of 7.7. The
48 weight percent solids at a pH of 7.6. Five ml of the uranium

respectively, 2.26

the montmorillonite suspension and samples were stirred and
this experiment indicate an apparent K, for uranium of 65.78
L/kg at a final pH of:

However, the large K, value for uranium in this simple system is suspect with respect to sorption
ite. Note that the experiments of Canterford

of anionic uranyl-carbonate species by mon
and Sparrow (1983) had about 0.004 mole
specie UOz(CO:,)3'4 (the dominant specie

uranium that could not be complexed as the
rri and Salvatore 1981). That is, the
amount of carbonate ion in the system, quires only 0.0127 mole/L of the available
0.017 mole/L of uranium to form UOZ(CO3)34. Therefore, the excess 0.004 mole/L of uranium
could be present as the U02+2 specie, which would readily sorb to montmorillonite in these neutral

and slightly alkaline pH waters because of its low zero point
2.5; Stumm and Morgan 1981).

The pH at which a clay mineral surface has a zero point of ¢ (PHzpo) is very important with
value below the pH,,., the

surface of the clay mineral contains only free positively-charged sites, which would attract

respect to sorption of charged aqueous species. At a solution

negatively-charged ions [e.g., UOZ(CO3)34]. Similarly, for solution pH values above the PH . 2

clay mineral surface will have only free negatively-charged sites and sorb positively-charged.ions
(.., UO,™D.

An alternate hypothesis for the large K, value reported by Canterford and Sparrow (1 is that
uranium partitioning is balanced to allow for UO,(CO5); (U = 0.004 moles/L) and UG(CO,),>
(U = 0.013 moles/L) complexation without U02+2. If this latter hypothesis holds, then the large Ky
value for this system suggests amorphous 'AIOOH and FeOOH (szpc = 8.2 and 7.8, respectively;
Stumm and Morgan 1981) films on the montmorillonite surface are sorbing the anionic complexes.
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This latter scenario is less credible because the dominant uranium specie in the solutions of pH = 8
and Sparrow 1983) would have to be UO,(CO,), 2, which is in contrast to the
(CO3)3 $pecie predicted by experimental studies (Ferri et al. 1981) and modeling results.

btion of Uranyl-Carbonate Species by Amorphous Ferric Oxyhdroxide

(1983), investigated sorption of uranium on amorphous ferric oxyhydroxide

(pHc = 7.8 to 8.5; Stumm and Morgan 1981) at 25 and 60 C from 0.01 molar (moles/L)
NaHCOj; solutions over an initial uranium concentration range of 0.0001 to 0.00000055 molar
(23.8 to0 0.13 mg/L). siphous ferric oxyhydroxide was prepared by mixing 1 ml of 0.1
molar FeCl; with 30
oxyhdroxide precipita

ferric oxyhydroxide

containing uranyl-carbonate solutiofis but no ferric oxyhydroxide indicated less than 2 percent tube-

wall sorption. A count on the initial and final solutions determined the sorbed uranium by
difference. Apparent K, values at 25 C and aygrage final pH of 8.6 to 8.7 ranged from about

species onto amorphous fcrric-oxyhydroiide surfaces in slightly alkaline solutions (maximum

loading = 3.116 moles U per kg ferric oxyhydroxide). However, these apparent Ky values were
calculated for a simple system and do not take into account th
SO4'2, P04'3, etc.) in natural waters. Sulfate and phosphate
available anion sorption sites on ferric oxyhydroxide and lowe

f other ligands (e.g.,

lexes would compete for the
’ values considerably,

primarily due to the much greater concentrations of sulfate an osphate, relative to uranium, in

solution.

P.4.1.3 Empirical Determination of a Uranium Distribution Coefficient

Using the maximum uranium loading on ferric oxyhydroxide (3.116 moles/kg; Ame;

an apparent K, between aquifer solids and groundwater was calculated. The calcilla
the following assumptions:

« Groundwater and aquifer solids are in equilibrium at 25 C

« The composition of the groundwater is the same prior to and at
equilibrium

o All uranium is speciated into U02(CO3)3'4

GO0%06
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e The experimentally determined maximum uranium loading on ferric
oxyhydroxide (3.116 moles/kg) is taken as the total moles of anionic
_species that can be sorbed

All Fe leached from the aquifer solids was in the form FeOOH

ch s?tption2sitc on FeOOH _58 occupied by either HCO-3, NO3',
HPO,“, SO, or UO,(CO3);

e The affinity of a molecule to sorb on FEOOH is proportional to its
charge and concentration

Assumptions three
instance, modeling

troduce the greatest uncertainty in the K, calculation. For

ium speciation in groundwaters (Table P-1) indicates and
UO,(H,PO,), UO, portant species in addition to U02(C03)3'4. This uncertainty can
be estimated by comp culated Ky value based on the assumptions above with that
calculated for speciation based on modeling results (Table P-3). Partitioning of all iron into
amorphous ferric oxyhydroxide is the most tenuous assumption, as the analytical leaching technique

is known to recover iron from both amorph crystalline-oxyhydroxide phases, and it is not

possible to distinguish between these two i nents. However, even if the partitioning of
iron among these components was known

a factor of two, and this uncertainty is p

ue would probably not decrease by more than
ter than uncertainties associated with the
remaining assumptions.

Noting the limitations of the above assumptions, empirical K4 values were calculated for all wells

(17) with groundwater and aquifer-solid analyses (Table P-3). ries wells (2) are in a
discontinuous glacial-till horizon which overlies the sand and aquifer (i.e., the till is not part
of the regional aquifer). Groundwater from Well 3016 has beesi paired with a clay interbed sample

undwater in the aquifer. These

that is probably impermeable and, therefore, not interacting wi
three well numbers have been excluded from discussions which
value. The remaining groundwater-solid pairs (14) have K; values that range from 0 to 3.89 L/kg,
and individual wells had variation in their K values from round to round (Table P-3). For

example, the Ky value calculated for the Round 3 (Fourth Quarter, 1988) groundwat: 4 '
Well 2010 is less than that of the Round 4 (First Quarter, 1989) K, value because of
sulfate value reported for the Round 3 analysis (i.e., less FEOOH sites available for u

er to the range and average K,

in Round 3 groundwater).

Empirical Ky values are dependent on the amount of leachable iron (i.e., FeOOH) preseht in the
aquifer solids, the concentration and speciation of uranium in the groundwater, and the aqueous

PIT/GW/TS.1-2/11-15-90 P-24 000167
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concentrations of remaining ligands. In general, all anionic complexes except uranium being fixed,
th

uranium K, value will:

Double if the leachable iron in the aquifer solids is doubled, while
plding the uranium concentration constant

“Double if the uranium concentration in solution is doubled, while
“holding leachable iron constant

* Decrease by half if the leachable iron in the aquifer solids is decreased
by half, with uranium concentration held constant

Points three and five merit special emphasis because of their sensitivity to the assumptions used in
calculating the K, values. As noted above, iron leached from the aquifer solids can be derived
and organic complexes. Unfortunately, there

d refine the amount of Fe that is partitioned

‘ is no quantitative way to separate these co
;. the empirically calculated Ky values

solely into amorphous ferric oxyhydroxide.:
overestimate the "true” Ky value.

Point five is important because speciation modeling predicts most wells to have phosphate

04)20 (see Section P.3.3).
¢ available speciation results for
those wells which

Pl te complex (e.g., 1082,

concentrations in excess of that required to complex uranium
Table P-3 reports the Ky value for the empirical model based
a limited number of groundwaters. Note that K, values appro
partition greater than 99 percent of the uranium into the neutral
2046, 2095). Based on the present modeling results for urani peciation, the groundwater-

aquifer-solid pairs in Table P-3 that were not modeled for speciation would probably have Ky
values close to zero, because the phosphate and uranium concentrations suggest most uranium will

be partitioned into the neutral phosphate complex. However, for reasons discussed.i
P.3.3.1, it is unlikely that the neutral phosphate complex plays as significant a mie as icted by
the EQ3NR geochemical code and, if present, this complex would still exhibit some so
capacity due to dipole attractions. Therefore, empirical K4 values based on the partiti
greater than 99 percent of the uranium into UO,(H,PO,), will probably underestimate

‘ K4 of the aquifer.

000- 0%,
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P42 AQUIFER SOLIDS, LEACHATES, AND GROUNDWATERS

results for uranium concentrations in groundwaters, leachates and aquifer solids were

jate apparent distribution coefficients for 17 monitoring sites. The following

e analyzed groundwater samples were in equilibrium with their
respective aquifer solids (i.e., kinetic rates for uranium sorption were
faster than solution flow rates through a given volume element)

e All uranium species sorb at the same rate

ntration of uranium in the aquifer solids is
jeachates 0.142 mg/kg

concentration is equal to the concentration of

the aquifer solid or leachate minus the background

» The apparent K, is equal to the sorbed uranium concentration (mg/kg)
divided by the groundwater uranium concentration (mg/L)

m reported uranium concentrations for aquifer
13.8 mg/kg), and Round 4 groundwater
analyses from Wells 2046 (U = 0.309 m 10 (U = 13.8 mg/kg), and Round 4
groundwater analyses from Wells 2046 (U = 0.309 mg/L) and 4010 (< 0.001 mg/L). These

samples were chosen because they bound the range of aqueous uranium concentrations available for

. Apparent distribution coefficients were calc

Using the uranium values cited

: The Ky for Well 4010
Utilizing the 2-sigma error
Kg and 9.7 to 17.9 mg/kg,
is 30 to 54 L/kg and 6,700 to
14,900 L/kg. Because of the similar uranium concentrations réported for the unleached aquifer

groundwater analyses that can be matched to the aquifer solids
above, Kys for Wells 2046 and 4010 are 42 and 10,800 L/kg,
was calculated with the uranium detection-limit value of 0.001:

range for uranium concentrations in the aquifer solids (12.3 to
respectively), the corresponding range in Ky for the respective

solids, the K, is primarily a function of the uranium concentration in the groundwater. It is '
important to reemphasize that the uranium concentrations reported for aquifer solids analyzed by
gamma spectrometry are suspect, and K; calculations using these anomalous result i

coefficients that are too great for the aquifer.

Results for total uranium concentrations in the leachate fractions derived from the diffe
, K4 =0).

leaching procedure indicate less than 2.5 ppb of uranium is sorbed on aquifer solids (1
‘ In contrast, a range of 33 to 783 ppb of uranium was reported for leachates derived from aquifer

solids which underwent the iron- and manganese-leaching procedure (see Section P.2.5.2). Utilizing
000i0¢3
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the above assumptions, and a background uranium concentration in the leachates df 0.142 mg/kg

:) not reflect "true” K, values. Three samples have distribution coefficients greater than
10. The samples which produced high K, values were obtained from the waste pit region bounding
the northwest corner of the Femald compound, and may indicate that precipitated uranium solids
are contributing to th alue.

P.4.3 COMPARISO
Figure P-12 is a plot )

ICAL AND CALCULATED K; VALUES
calcuiated Ky from groundwater and leachate analyses versus the

predicted Ky based on ..the empirical sorption model. Wells in the regional aquifer were broken
down into areas adjacent to and within the FMPC compound. The areas are identified as the South
Plume (south of the FMPC), waste pit (northw the FMPC), and within the FMPC compound.
The 1000 Series wells in the glacial till are aste Pit Area, but have been plotted separately
because they are not part of the regional aqy lot was constructed with the data in Tables
P-3 and P-4 after averaging multiple K4 v dual wells and omitting Well 3016, which

Monitoring wells in the regional aquifer, mprésenting the South Waste Pit areas, were

identified and plotted separately to construct regression lines for # A slope of one on
ect fit between the

“has a slope of 0.87, but

this plot, and a cormrelation coefficient (r) near one, would indica
calculated and predicted Ky. The regression line for the South
a less than ideal "r" value of 0.65. Data points representing the
line with a slope of 6.44 and an "r* value of 0.29, indicating a poor fit between the predicted and
calculated Ky values. Wells within the FMPC compound and glacial till lie near the South Plume
regression line (but have not Been used in the calculation of the regression line). The
between predicted and calculated Ky values for aquifer samples from the waste pit
precipitation of amorphous uranium solids has occurred in those samples with calculated

aste Pit Area define a regression

greater than 30 (e.g., 2007, 2010, 2027). If precipitation and sorption are mechanisms
for retardation of uranium in the Waste Pit Area, the empirical model would not be ex
predict accurately the K because it is based only on the sorption of uranium.

000110
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The precipitation hypothesis is supported by uranium concentrations in groundwater recovered from
aste:Pit-Area Wells 1073 and 1082 (0.8 to 4.4 mg/L), and 3010 (0.015 to 0.020 mg/L). These

' btained from the glacial till above the aquifer (1073 and 1082) and, within the

low (3010) the 2000 Series samples with high K4 values. If uranium-rich waters in

ertically infiltrated to the underlying aquifer, mixing at the till/aquifer interface

JRANIUM K, FOR THE FERNALD SITE AQUIFER
P-4 and Figure 12 indicate that the most reliable indicators of
site aquifer come from well locations in the South Plume area.

Results presented in
uranium K, values
This conclusion is b
Wells in the Waste
calculated values for 2000 Series wells (Table P-4) suggest uranium is also present as amorphous
oxide solids. Additionally, calculated Ky values, (Table P-4), rather than empirical Ky values

(Table P-3), were used to estimate the site K.
valid and defensible.

ilarity of K4 estimates derived from two independent methods.
‘not considered in the estimation of the aquifer K, because large

se assumptions based on the former are more

To derive the estimate of the aquifer K,
(Table P-4) were averaged (if Round 3 and Round 4 values were reported) to produce a single Ky
value for each well. Wells with reported Ky values of zero were not considered because of the

inability to estimate a reasonable Ky (i.e., a distribution coeffic

Series wells from the south plume area

nite number). A simple

average of the K, value for each well was considered to be thg best approach, because there is no
basis on which to weigh individual wells at this time. After s; i
wells (2016, 2046, 2095 and 3095) were used to estimate the 3
the four wells is 2.38, with a standard deviation of 1.42.

the preceding criteria, four
er K4. The mean K, value for

The mean uranium Ky value can be converted to a retardation factor with the relationship:
Rs =1 + (tho/n) * Ky
where:
R; = retardation factor
rho = density
n = porosity _
- Kq = distribution coefficient

0003%1
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Using the mean K value of 2.38 L/kg (note: a L/kg = ml/g), and typical values for rho
ml) and n (0.25) in the sand and gravel aquifer, the R; value is 25.8. This
r implies that uranium species present in the groundwater will move one meter for

uranium (if any) is estimated from subtracting an "estimated” background level from the

total. Additionally, recall that the differential leaching of aquifer solids (6 samples) for uranium
recovered less than 2.5 ppb uranium, which suggests the above retardation factor is far too great.

Noting the limitations*of the presernit estimate of the aquifer Ky, it is recommended that the solute
transport model be evaluated using the limits defined by the standard deviation of the mean Ky
value. This approach requires two runs of the model at bounding conditions of 0.96 L/kg
(estimated lower limit) and 3.80 L/kg (estim
values calculated for the site (excluding 2
conditions can be cautiously applied to th

pper limit), and would bracket the majority of K,
eri¢g wells in the Waste Pit Area). The bounding

rea, noting that additional analytical data are
required to evaluate the retardation proce these 2000 Series wells. Given the current
data base available to work with, this is the recommended application of the estimated Ky value to

the solute transport model.

P.5.0 CONCLUSIONS

P.5.1 ISSUE THREE
Subsurface soils and surface waters from Paddys Run and the Sewer OQutfall Ditch
(Figure P-1) have been sampled and analyzed to evaluate the degree of infiltration of uranium-

bearing surface water to the underlying aquifer. Presently, there is no indication of contaminatioh
at four of the six soil sample sites. If uranium-rich waters had infiltrated these soil:-hori

present observation suggests uranium was not attenuated (e.g., the dominant speci:
waters may have been UO,(H,PO,), ) and/or uranium that had sorbed (e.g., UO,(CO
precipitated was desorbed or dissolved prior to sampling and- analysis of the soils. B

scenarios are compatible with the modeling results, which predict the presence of neu
phosphate and anionic uranyl-carbonate species in the surface waters (Table P-2).
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The top ten feet of material at Sites S1 (1405) and S2 (1406) have concentrations of uranium that
are:about:twice the level of background values. This observation indicates uranium has been

ed at these sites by sorption or precipitation processes occurring in the soil (site S1) and

(Site S2). The uranium profiles for these sites (Figure 3) are compatible with
breakthrough to the underlying aquifer (i.e., all uranium is retarded by the soil, Site
al breakthrough to the aquifer (i.e., "historical” uranium is present in the aquifer, Site
S2). If the retardation of soluble uranium by the soil and aquifer solids is taking place via a

sorption process in the unsaturated zone, modeling results indicate the uranium is in the form of

anionic uranyl-carbon:; able P-2).

The présence of so ted uranium at these sites presents the potential for future

releases to the unde

P.5.2 ISSUE FIVE

Partitioning of uranium between aquifer solid groundwater (see Figure P-9 for well locations)

was evaluated to calculate an apparent distri
gravel aquifer. The Ky was evaluated by:

e Modeling the uranium spec
geochemical code and comg

dwater using the EQ3NR
ation output to published Ky

studies (i.e., the empirical method)

» Obtaining analyses for total uranium on archived aquifer solids,
leachates and groundwaters to calculate a Ky dire

Empirically derived K, values for well sites in the regional aq
(Table P-3). Distribution coefficients near zero for wells that ] r than 99 percent of their
uranium partitioned into UO,(H,POy), (e.g., 2046 and 2095, T P-3) are probably too low, and
reflect the inability to model organic phosphate complexation and sorption processes that take credit

ranged from O to 3.89 L/kg

for molecular dipole attraction. Speciation results were not available for all groundwaters evaluated
with the K4 model, and UOZ(CO3):,,'4 was assumed to be the specie present. This assumption is
supported by:

» Speciation results which indicate UOz(CO3)3'4 is the dominant specie i
phosphate concentrations are below the detection limit of
0.02 mg/L. (Table P-1)

» Experimental anion-exchange tests that recovered greater than
90 percent of the uranium from site groundwater samples (Khan 1989;
personal communication)

000113
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e Documented experimental studies that indicate the dominant uranyl ion
in bicarbonafe solutions at neutral and slightly alkaline pH is
. UO,(CO3);  (Ferri et al. 1981)

empirical K, values are strongly dependent on the amount of iron that is

1o amorphous ferric oxyhydroxide. Because it is not possible to separate the leachable
1mn~mto~~am6rphous and crystalline components, all iron was assumed to be partitioned into the
amorphous phase. This assumption yields Ky values that overestimate the "true” Ky of the aquifer.

Distribution coefficien rectly from analyses of uranium in aquifer solids, leachates,

and groundwaters ran ater than 10,000. Calculations of distribution coefficients
based on gamma spec lysis of uranium in aquifer solids (30 to 14,900 L/kg) are not

reliable and are exclu retations based on the leaching results. The differential-

ed that
uranium products, which suggests the uranium K is zero for these samples. However, the iron-

leaching procedure re than 2.5 ppb of uranium is present as sorbed or amorphous
and manganese-leaching technique recovered
resulting in a range of 0 to 68 L/kg for cal
subtracted from the uranium values obtained
calculation (adsorbed U = total U - backgro about a third of the samples had a
calculated concentration of adsorbed uraniuat equal 20, which resulted in a K, of zero for that
sample. It is important to note that those wells with calculated K, values of zero are mainly from
3000 and 4000 Series horizons, which in general show no indication of uranium contamination.

783 ppb of uranium from the aquifer solids,
K, values (Table 4). A background level was
iron and manganese leachate prior to the

P.5.2.1 Best Estimate of the Uranium K, for the Aquifer

The best estimate of the uranium K; value for the aquifer was
for south plume wells. Empirical K, values were not used bec
derivation are not as valid and defensible as the calculated Ky assumptions. Calculated K, values
for Waste Pit Area wells were also excluded from the estimate of the site Ky, because 2000 Series
wells in this area have apparent K, values that are anomalously high with respect to values

om calculated K values
the assumptions supporting the

calculated for the majority of wells (Figure P-12). These anomalous values may i

is being retarded by‘ sorption and precipitation processes in the Waste Pit Area.

Using the calculated Ky values from four South Plume wells (2016, 2046, 2095 and 3
Table P-4), the aquifer Ky was estimated as 2.38 L/kg. This K, indicates the retardati
uranium in the aquifer will be close to 26, which appears to be too great as evidenced by the

differential-leaching tests. However, it is recommended that the solute transport model be evaluated
at the lower (0.96 L/kg) and upper (3.80 L/kg) standard-deviation limits. These two bounding cases

factor for

C00iiq
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would bracket the majority of K, values calculated for the south plume and Waste Pit Area wells
e 2000 Series waste pit wells) The bounding cases may be cautiously applied to the

00UEL5
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TABLE P-1

RESULTS FOR URANIUM SPECIATION IN WATERS
RECOVERED FROM FERNALD MONITORING WELLS

pH Eh U P Species % CB
mV mg/L mg/L

1019 3 7 386> 0818  0.061 UO,(CO3),™ 52 +14.84°
UO,(H,PO,),’ 29
UO,(CO,), > 19
1019 4 0739  0.12 UO,(H,PO,),’ 62  +7.99
UO,(CO5)5™ 26
UO,(CO,), 2 12
1073 3 76  321° UO,(H,PO,),’ 57 +2.60
UOL(CO,)™ 39
UOL(COy), 2 3
1073 4 71 366" UO,(COs)™ 92  +64.16°
U0,(CO3), > 8
1082 3 7 350° 1079 379 >99 2685
1082 4 7.35  350° 0.81 0.65 >99  +19.61%
2013 3 685 137" 0008 < 0.02 67  +4.55
31
2
2024 3 730 152 0005 0342 UO,(H,PO,)," >99 - 9.46
2044 3 747 331 0.033  0.024 UO,(H,PO,),’
2045 4 713 . 324 0283 NR UO,(CO3),™

2
UO,(CO3),

See footnotes at end of table.
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FMPC-0004-1

November 15, 1990
TABLE P-1
(continued)
pH  Eh U P Species % CB*

0.309 0.39 UO,(H,PO,),’ > 99 +8.68
2060 3 0171 < 0.02 UOL(CO,)™ 61  +4.07
UO0,(CO3),> 39
2060 4 0.250 0.03 UO,(H,PO,),’ 45 +3.74
UOL(CO,)™ 32
U0,(CO3),> 23
2061 4 76 324° UO,(CO,)s ™ 50  +4.87
UO,(H,PO,),’ 25
UO,(CO,), 2 24
2094 4 71 75" 00045 192 UO,(H,PO,)," >99  +54.91
2095 3 733 331" 0177  0.063 >99  +14.65°
3001 3 8 81" 0.015 < 0.02 89 20.52°
11
3001 4 71 81 0015 012 UO,(H,PO),°  >99  +6.00
3013 3 630 136" 0011 <002 UO0,(CO,), ™
' UO0,(CO5);™*
UO,(CO5)°

See footnotes at end of table.
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FMPC-0004-1
November 15, 1990
TABLE P-1
(continued)
pH Eh U P Species % CB*

. 3013 4 84 13" 049 0.02 UO,(CO3)™ 79 +1.22
’ UO,(H,PO,),° 15
U0,(CO,), 2 6

3014 3 0.028 < 0.02 UOL(CO5)™" 70 +1.56
UO0,(CO3), > 30

3016 3 7.60 331"  0.008 < 0.05 UO,(CO3),™ 64 -15.24°
UO,(CO,), 2 35

3062 3 790 331 UO0,(CO4),™ 83 +6.59
UO,(CO3),> 17

3069 3 7.60 -~ 331° 0005  0.662 UO,(H,PO,),° > 99 592

3094 4 71 99"  0.0006 0.88 UO,(H;PO,),°  >99  +58.57

4097 4 71 221" 00019 0.1 D >99  +1.77

NR = No analysis reported.

Charge balance expressed as percent of total charge

®Eh estimated from the NH4 /NO;™ redox couple.

“Excessive charge balance probably due to-high Mg or Na concentrations (159 and 437 mg/L,
respectively).

Excessive charge balance probably results from high Ca concentration (4000 mg/L).
“Eh estimated from results of NH,'/NO,™ redox couple in wells 1019 and 1073.

fExcessive charge balance probably due to high SO4'2 concentration (510 mg/L).

. "
PIT/GW/TS.1-2/11-15-90 000316
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FMPC-0004-1
November 15, 1990

Table P-1
(continued)

ectrode measurement.

'Eh value estimated from NH4+/N03' redox couple for Well 3062.

"Eh value obtained from Round 4 analysis of same well number.

°Excessive charge balance probably due to high Ca and Na c¢oncentrations (173 and 24.4 mg/L,
respectively), relative to Round 4 analysis well.

PExcessive charge balance probably due to } ':2 concentration (174 mg/L).

PIT/AGW/TS.1-2/11-15-90 ’0(30121
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2617

November 15, 1990

TABLE P-2

RECOVERED FROM PADDYS RUN, FERNALD SITE

IESULTS FOR URANIUM SPECIATION IN SURFACE WATERS

pH Eh P U Species % CB*
mV mg/L mg/L
w07 8.38 451 0.032 0.015 UO,(H,PO,),° > 99 +2.99
Ww-11 8.58 BDL  0.009 UO,(COy)™ 90 +3.36
U0,(CO3), ™ 10 +336
ASIT003 8.57 452 0.161  0.002 UO,(H,PO,),° > 99 +1.99

®Charge balance expressed as percent of totak

BDL = Below detection limit.

PIT/GW/TS.1-2/11-15-90
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TABLE P-3

FOR SELECTED MONITORING WELLS

9617

FMPC-0004-1
November 15, 1990

EMPIRICAL URANIUM DISTRIBUTION COEFFICIENTS

Well oy No; HPO,2 so,7 U As® Fe’ Ky Ky
g/L mg/L mg/L mg/L mg/L mg/g L/kg L/kg

Regional Aquifer
South Plume Area
2016  rdif 292 59 0.021 10437  0.69 227 NAS
2046 3997 355 74 0.309 8956  0.81 2.15 0.02
2095 3787 352 18 0.177 10038  0.66 1.77 0.02
2095 3976 349 137 0146 10038  0.66 148  Na®
3095 3786 370 18 0.005 10049  1.00 3.08 NAS
3095 3971 335 10049  1.00 2.67 NAS
4014  rad, 285 10407  1.08 0.00 NAS
4016  rd4 313 10460  0.38 0.00 NAS
Waste Pit Area

‘07 rdst 311 <04 425 10796  1.08 276  NASB
2010 3715 368 <04 0.17 8426  1.50 2.55 NAS
2010 3902 382 < 0.08 8.1 8426  1.50 3.18 NAE
2027 3941 406 < 0.08 0.06 ; 7874 158 2.67 2.45
2034 3646 287 9.74 0.136 39 0.024 8286  0.78 2.73 2.51
3010 3714 428 123  <0.06 712 0.020 10611  3.50 3.15 NAS
3010 3901 426 084 006 520 0.015 10611  3.50 3.89 NAS
4010  rd4 399 <008 025 36 < 0.001 ‘ 000  Na®
FMPC Compound
2013 3709 328 <04 <0.06 97 0.008 1.74 1.12
2013 3900 311 0.13 037 110 0.036 1.74 NAS
2054 rd5 402 < 0.4 0.82 666 0.026 1.13 NAE
Clay Interbed
3016 rdI: 270.2 04 <0.15 56 0.011 10449  4.83 139
3016  rdd 242.8 11.6 0.22 60 0.007 10449 4383 NAS

See footnotes at end of table.

PIT/GW/TS.1-2/11-15-90
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November 15, 1990

TABLE P-3
(continued)
NOs- HPO,? 50,2 U AS® Fe’ K K
mg/lL mg/lL mg/L mg/L mg/g L/kg L/kg
Glacial Till
Waste Pit Area
1073 3775 481 612 3.297 8561 1.00 0.72 0.29
1073 3951 455 428 4.380 8561 1.00 0.65 0.62
1082 3765 531 510 1.079 7667 0.81 0.82 0.01
1082 3949 518 20 0.810 7667 0.81 1.80 0.02

*Groundwater sample ID.
t’Aquifer-solid sample ID.

achable iron obtained from aquifer solid.

to UO(

4pistribution coefficient based on all U partion
“Distribution coefficient based on speciation in Table 1.
'Round number indicated because sample ID not available.
ESpeciation results not available.

hAnalysis not reported.

1Y

{1 CENAY
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TABLE P-4

CALCULATED URANIUM DISTRIBUTION COEFFICIENTS
FOR SELECTED MONITORING WELLS

GW* U AQ° U Ups$ K,
mg/L mg/kg mg/kg L/kg

‘Well

Regional Aquifer
South Plume Area

2016 0.158 0.016 0.76
2046 0.675 0.533 1.72
2095 0.783 0.641 3.62
2095 0.783 0.641 4.39
3095 0.158 0.016 3.20
3095 0.158 0.016 2.67
4014 0.117 0 0
4016 0.033 0 0

Waste Pit Area

‘ 2007 0.483 0.341 68.2

2010 0.408 0.266 53.2
2010 0.408 0.266 12.7
2027 0.383 0.241 34.4
2034 0.117 0 0
3010 0.183 0.041 2.05
3010 0.183 0.041 2.73
4010 ) 0.075 0

FMPC Compound
2013 3709 0.008 0 0
2013 3900 0.036 0 0
2054 rdS 0.023 0.191 8.3

Clay Interbed
3016 rdI: 0.011 10449 0.133 0
3016 . rdd 0.007 10449 0.133 0

See footnotes at end of table.
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_ FMPC-0004-1
‘ : November 15, 1990
TABLE P-4
(Continued)
b c d
GW* U AQ U Upge K,
mg/L mg/kg mg/kg L/kg
Glacial Till
Waste Pit Area
1073 3.297 8561 0.675 0.533 0.16
1073 4.38 8561 0.675 0.533 0.12
1082 1.079 7667 0.367 0.225 0.21
1082 0.81 7667 0.367 0.225 0.28

*Groundwater sample number

bAquifer-solid sample number

’Adsorbed uranium (total uranium - background of
dDistu'bul:ion coefficient calculated from adsorbeg}

“Round number indicated because sample ID not available

‘l/owns.l-zn 1-1590
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Sample Depth (ft)

U-total (ug/g)
2-sigma error

Boring No.
Sample ID
Sample Date
Sample Depth (ft)

U-total (ug/g)
2-sigma error

Boring No.
Sample ID
Sample Date
Sample Depth (ft)

U-total (ug/g)
2-sigma error

Boring No.
Sample ID
Sample Date
Sample Depth (ft)

U-total (ug/g)
2-sigma error

PIT/GW/TS.1-2/11-15-90

ATTACHMENT P.I

FMPC-0004-1
November 15, 1990

ANALYTICAL RESULTS FOR SOIL SAMPLES

P1
98152
06/02/89
0.0-0.5

8174

06/02/89
15.5-16.0

P2
98118
05/31/89
2.0-25

2.1
1.3

P2

98151
05/31/89
19.5-20.0

<34

P1
98153
06/02/89
1.5-2.0

P1

98180
06/02/89
19.0-19,5

P2
98119
05/31/89
3.0-3.5

<35

P3
98029
05/16/89
0.0-0.5

1.5
1.4

P-I-1

P1
98155
06/02/89
3.54.0

P1

98189
06/02/89
23.5-24.0

<2

P3
98030
05/16/89
1.5-2.0

2.2
1.1

P1
98162
06/02/89
8.0-8.5

P2
98116
05/31/89
0.0-0.5

<2

P3
98032
05/16/89
3.0-35

1.8
1.5

Pl
98168
06/02/89
12.0-12.5

P2
98117
05/31/89
1.5-2.0

<3

P2

98143
05/31/89
15.5-16.0

<25

6617

00063127
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November 15, 1990

ATTACHMENT P.I

(continued)
P3 P3 P3 P3
98040 98047 98054 98061

- 05/22/89 05/22/89 05/22/89 05/22/89
Sample Depth (ft) 8.5-9.0 12.5-13.0 16.0-16.5 19.5-20.0
U-total (ug/g) 1.5 <29 <28
2-sigma error 1.3
Boring No. S1 S1 S1 S1
Sample ID 18062 98064 98066 98077 98089
Sample Date 05/24/89 05/24/89 05/24/89 05/24/89 05/24/89
Sample Depth (ft) 0.0-05 1.5-2.0 3.0-35 105-11.0  17.5-18.0
U-total (ug/g) 8.2 9.9; 3.9 3.0 2.6
2-sigma error 2.1 2. 1.9 1.6 1.3
Boring No. S1 S1 S2 S2
Sample ID 98100 98106 98115 98010 98011
Sample Date 05/24/89 05/24/89 05/24/89 05/16/89 05/16/89
Sample Depth (ft) 24.5-250 28.5-29.0 1.5-2.0
U-total (ug/g) 4.3 <30 4
2-sigma error 1.8 2
Boring No. S2 S2 S2 S2
Sample ID 98012 98014 98017 98020
Sample Date - 05/16/89 05/16/89 05/16/89 05/16/89
Sample Depth (ft) 2025 3.540 6.0-65  9.5-100
U-total (ug/g) 4 7 8
2-sigma error 2 _ 2 2

000278
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ATTACHMENT P.I

(continued)

S2 S3 S3

98028 98000 98001
Sample Date 05/16/89 05/16/89 05/16/89
Sample Depth (ft) 16.5-17.0 0.0-0.5 0.5-1.0
U-total (ug/g) 3 6
2-sigma error 2
Boring No. S3 S3
Sample ID 98004 98006 98008
Sample Date 05/16/89 05/16/89 05/16/89

Sample Depth (ft) 4.5-5.0 7.5-8.0

U-total (ug/g)
2-sigma error

2617

November 15, 1990

S3 S3
98002 98003
05/16/89 05/16/89
1.5-2.0 3.0-35

3
2
S3
98009
05/16/89
8.0-8.5

PIT/GW/TS.1-2/11-15-90 P-1-3
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ATTACHMENT PII
ANALYTICAL RESULTS FOR SURFACE WATERS

6617

FMPC-0004-1
November 15, 1990

ASIT003 w-07 W-11
05/14/89 05/14/89 05/14/89

8.57 8.38 8.58
Eh (mV) 452 451 441
0, (mg/L) 8.6 10.2 11.8
T (C) 15.5 13 18
Cl (mg/L) 34 18.19 19.99
F (mg/L) 0.21 0.18
HCO; (mg/L) 256.5 212
NH,* (mg/L) <01 < 0.1
NO,? (mg/L) 11.95 10.23
P (mg/L) 0.032 < 0.02
50,72 (mglL) 57.36 57.36
Ag (mg/L) < 0.01 < 0.01
Al (mg/L) < 0.06 0.0764
As (mg/L) < 0.002 < 0.002 < 0.002
Ba (mg/L) 0.0399 0.0374 0.0313
Ca (mg/L) 72.3 71.8
Cd (mg/L) < 0.002 < 0.002
Cr (mg/L) < 0.01 < 0.01
Cu (mg/L) < 0.01 < 0.01
Fe (mg/L) 0.0659 0.0415
Hg (mg/L) < 0.0002 0.0002 0.0003
K (mg/L) 1.84 1.55
Mg (mg/L) 19.9 214
Mn (mg/L) 0.0097 0.0152
Mo (mg/L) < 0.01 < 0.01
Na (mglL) ' 14.6 9.93

See footnote at end of table.

PIT/GW/TS.1-2/11-15-90 P-11-1
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November 15, 1990

ATTACHMENT PII

(continued)
ASIT003 Ww-07 W-11
05/14/89 05/14/89 05/14/89
< 0.02 < 0.02 < 0.02
0.0026 0.0093 0.0074
< 0.002 < 0.002 < 0.002
3.89 1.73 2.25
< 0.006 < 0.002 < 0.006
0.002 0.015 0.009
< 0.01 < 0.01 < 0.01

“Less than sign indicates value is below de

000131
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‘ R ' November 15, 1990
ATTACHMENT PIII

ANALYTICAL RESULTS FOR AQUIFER SOLIDS

1014 1046 1073 1075 1082
07363 08016 08561 08572 07667
Sample Depth (ft) 15.0-16.5 3.04.5 18.0-19.5 21.0-22.5 13.5-15.0

Leached Metals®

Fe (mg/g) 0.68 1.00 0.92 0.81
Mn (mg/g) 0.69 0.47 0.33 0.28
U-total (ug/g) 0.442 0.675 0.750 0.367
2-sigma error 0.050 0.067 0.083 0.042
TOC® (mg/g) 5.8 2.2 3.1 4.4
CEC® (meg/g) 0.190 0.190 0.150 0.140
< 200 mesh® (wt %) 5.03 70.90 58.24
U-total (ug/g) 11.6 NA NA

. 2-sigma error 3.1

See footnotes at end of table.

000132
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. . November 15, 1990

ATTACHMENT PIII

(continued)
2007 2007 2009 2010 2027
. 10779 10796 07084 08426 07874
Depth (fi) 13.5-15.0 65.0-66.5 38.5-40.0 70.0-71.5 65.0-66.5
Leached Metals
Fe (mg/g) 1.08 0.52 1.50 1.58
Mn (mg/g) 0.28 0.15 0.29 0.23
U-total (ug/g) 0.483 0.108 0.408 0.383
2-sigma error 0.058 0.017 0.042 0.042
TOC (mg/g) 5.2 3.9 4.7 3.2
CEC (meq/g) 0.110 0.018 0.028 0.018 0.027
< 200 mesh (Wt %)  60.74 9.79 11.63
U-initial” (ug/g) NA NA 105
2-sigma error 27
‘ U-final® (ug/g) NA NA 113
2-sigma error 29

See footnotes at end of table. ‘ 000133
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ATTACHMENT P.II

2617

FMPC-0004-1
November 15, 1990

(continued)

2045 2046 2054 2054 2054

08947 08956 10414 10416 08645

30.0-31.5 61.0-62.5 6.0-7.5 9.0-10.5 70.0-71.5
Leaached Metals®
Fe (mg/g) 0.55 0.65 1.17
Mn (mg/g) 0.20 0.19 0.28
U-total (ug/g) 0.275 0.383 0.333
2-sigma error 0.025 0.042 0.033
TOC® (mg/g) 8.2 3.9 3.7
CEC® (meq/g) 0.025 0.025 0.120 0.130 0.015
< 200 mesh? (wt %) 8.92 61.46 11.98
U-total (ug/g) NA® NA NA
2-sigma error

‘ U-initial” (ug/g) 150 NA NA
2-sigma error 38
U-final® (ug/g) 145 NA NA NA NA
2-sigma error 36
@

See footnotes at end of table. 0003134
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]

FMPC-0004-1

’ November 15, 1990

ATTACHMENT P.III

(continued)

2055 2055 3034 3043 3043

10736 10766 08286 07619 07790

1.5-3.0 70.0-71.5 50.0-51.5 7.5-9.0 108.0-109.5
Leached Metals
Fe (mg/g) 1.17 0.78 0.60 1.00
Mn (mg/g) 0.26 0.23 0.32 0.09
U-total (ug/g) 0.142 0.117 0.258 0.100
2-sigma error 0.017 0.017 0.033 0.008
TOC (mg/g) 4.1 50 3.9 3.2
CEC (meq/g) 0.022 0.029 0.120 0.022
< 200 mesh (wt %) 57.80 72.64 12.34
U-total (ug/g) NA NA NA
2-sigma error

‘ U-initial (ug/g) NA NA 106

2-sigma error 26
U-final (ug/g) NA NA NA NA 116

2-sigma error

See footnotes at end of table.
000135
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ATTACHMENT P.III

FMPC-0004-1

5617

November 15, 1990

(continued)
3084 3095 3095 4010 4010
D 07558 10038 10049 10611 10607
“Depth (ft) 120.0-121.5  20.0-21.5 75.0-76.5 131.5-132 195.0-196.5
Leached Metals®
Fe (mg/g) 0.66 1.00 3.50 1.08
Mn (ng/g) 0.28 0.29 0.12 0.16
U-total (ug/g) 0.783 0.158 0.183 0.216
2-sigma error 0.083 0.017 0.017 0.025
TOC® (mg/g) 6.2 4.7 15.0 42
CEC® (meg/g) 0.028 0.018 0.260 0.022
< 200 mesh® (wt %) NA® 67.38 11.26
U-total (ug/g) 115 13.8 NA
2-sigma error 33 4.1
U-initial’ (ug/g) NA NA NA
2-sigma error
U-final® (w/g) NA 123 93 NA NA
2-sigma error 32 25

See footnotes at end of table.
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FMPC-0004-1
. November 15, 1990
‘ ATTACHMENT PIII
(continued)
4013 4013 4014 4016 4016
10670 10696 10407 10437 10449
epth (ft) 75.0-76.5 205.0-206.5 135.0-136.5 30.0-31.5 89.3-89.6
" Leached Metals
Fe (mg/g) 1.33 1.08 0.69 4.83
Mn (mg/g) 0.39 0.25 0.21 041
U-total (ug/g) 0.242 0.117 0.158 0.133
2-sigma error 0.025 0.017 0.017 0.017
TOC (mg/g) 33 1.4 5.1 16.0
CEC (meq/g) 0.020 0.025 0.035 0.190
< 200 mesh (wt %) 6.54 7.24 78.50
U-total (ug/g) NA NA 14.0
2-sigma error 4.2
‘ U-initial (ug/g) NA 107 NA

2-sigma error 28
U-final (ug/g) NA NA NA 101 NA
2-sigma error

See footnotes at end of table.
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FMPC-0004-1
November 15, 1990

ATTACHMENT P.III
(continued)

4016
. 10460
Sample Depth (fy)  145.0-146.5

Leached Metals”
Fe (mg/g)

Mn (mg/g)
U-total (ug/g)
2-sigma error
TOC® (mg/g) 17
CEC® (meg/g) 0.023
< 200 mesh” (wt %) 8.50

aSample leached with a solution of acetic ; fpxylamine hydrochloride
PTOC = total organic carbon |
°CEC = cation exchange capacity
dWeight percent of sample less than 0.075 mm (silt + clay)
eAnalysis not available

f'I‘otal uranium before differential-leaching analysis

®Total uranium after differential-leaching analysis

000138
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ATTACHMENT PIV

ANALYTICAL RESULTS FOR MODELED GROUNDWATERS

1019 1019 1073 1073 1082
3748 3944 3775 3951 3765
12/04/88 03/08/89 12/04/88 03/12/89 11/20/88
3 4 3 4 3
pH 7 7.6 7
Eh (mV) NR NR NR
0, (mg/L) 2.8 6.25 8
T C) 7 12.5 13
Cl (mg/L) 490 1030 2
F (mg/L) 0.48 0.5 1.25
HCO; (mg/L) 403.8 395.8 530.8
NH,* (mg/L) 0.139 0.5 <o0.1”
NO; (mg/L) 56.7 0.9 <04
P (mg/L) 0.061 0 3.79
50,2 (mg/L) 224 250 510
Ag (mg/L) < 0.02 0.01 < 0.02 < 0.0005
As (mg/L) 0.004 < 0.003 0.002 < 0.002
Ba (mg/L) 0.195 0.1 0.138 0.044
Ca (mg/L) 522 300 413 129
Cd (mg/L) 0.002 0.006 0.002 < 0.002
Cr (mg/L) < 0.02 0.04 < 0.02 < 0.02
Cu (mg/L) < 0.01 < 0.01 < 0.01
Fe (mg/L) 1.51 0.87 0.073 0.015
Hg (mg/L) < 0.0002 < 0.0002 0.0007
K (mg/L) 1.47 0.86 33
Mg (mg/L) 159 86 325
Mn (mg/L) 1.61 1.1 2.1
Mo (mg/L) < 0.02 0.02 0.533
See footnotes at end of table.
00013
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ATTACHMENT PIV

‘8617

FMPC-0004-1
November 15, 1990

(continued)

1019 1019 1073 1073 1082

3748 3944 3775 3951 3765

12/04/88 03/08/89 12/04/88 03/12/89 11/20/88
Round No. 3 4 3 4 3
Na (mg/L) 170 149 178 133
Ni (mg/L) < 0.03 0.066 0.114 < 0.02
Pb (mg/L) < 0.002 0.004 < 0.002 < 0.002
Se (mg/L) < 0.005 < 0.002 < 0.002 0.002
Th (mg/L) < 0.005 0.012 0.025 < 0.006
U (mg/L) 0.739 3.297 4.38 1.079

See footnotes at end of table.

PIT/GW/TS.1-2/11-15-90
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FMPC-0004-1
November 15, 1990

ATTACHMENT PIV

(continued)
1082 2013 2024 2044 2045
3949 3709 3656 3682 3993
02/05/89 11/15/88 11/02/88 11/03/88 01/23/89
4 3 3 3 4
pH 7.35 6.85 7.30 7.47 7.3
Eh (mV) NR NR
0, (mg/L) 4.39 3.6
T CC) 10 7
Cl (mg/L) 38 15
F (mg/L) 0.17 0.17
HCO; (mg/L) 308.3 344.3
NH," (mg/L) < 0.1 < 0.1
NO; (mg/L) 1.32 8.72
P (mg/L) 0.024 NR
50,2 (mg/L) 121 54.2
Ag (mg/L) . . < 0.01 < 0.0005
As (mg/L) < 0.002 < 0.002 < 0.002 < 0.002 < 0.002
Ba (mg/L) 0.077 0.072 0.044
Ca (mg/L) 143 119 108
Cd (mg/L) 0.011 < 0.002 0.004
Cr (mg/L) 0.039 < 0.02 0.025
Cu (mg/L) 0.018 < 0.01 0.012
Fe (mg/L) 0.062 2.67 0.043
Hg (mg/L) 0.0012 < 0.0002 < 0.0002
K (mg/L) 2.01 2.16 1.35
Mg (mg/L) 72.8 279 33.8
Mn (mg/L) 0.01 0.198 0.40
Mo (mg/L) <0.02 ° < 0.033 < 0.02
See footnotes at end of table.
PV 000141
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ATTACHMENT PIV

. 8617

FMPC-0004-1
November 15, 1990

(continued)
1082 2013 2024 2044 2045
3949 3709 3656 3682 3993
02/05/89 11/15/88 11/02/88 11/03/88 01/23/89
4 3 3 3 4

Na (mg/L) 11.6 9.5 16.8 9.12
Ni (mg/L) < 0.02 < 0.02 < 0.02 < 0.02
Pb (mg/L) < 0.002 0.032 0.003 < 0.002
Se (mg/L) < 0.002 < 0.002 < 0.002 < 0.002
Th (mg/L) < 0.002 < 0.004 < 0.002 0.005
U (mg/L) " 0.008 0.005 0.033 0.283

See footnotes at end of table.

PIT/GW/TS.1-2/11-15-90
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FMPC-0004-1
November 15, 1990

ATTACHMENT P1V

(continued)
2046 2060 2060 - 2061 2054
3997 3696 3889 3890 3872
02/02/89 10/25/88 02/01/89 02/07/89 02/01/89
4 3 4 4 4
pH 7.4 7.6 7.1
Eh (mV) 477 415 75
0, (mg/L) 2 0.7 0.4
T (0 8 6 15
Cl (mg/L) 22 19.5 185
F (mg/L) 0.48 0.33 0.17
HCO; (mg/L) 355.3 265.5 276.6 262.5 716.6
NH," (mg/L) <01’ 0.266 <0.1
NO;  (mg/L) 5.98 1.73 <04
P (mg/L) 0.39 0.02 1.92
50,2 (mg/L) 73.5 61.8 33
Ag (mg/L) < 0.0005 < 0.0005 < 0.0005
As (mg/L) < 0.002 0.21
Ba (mg/L) 0.067 1.25
Ca (mg/L) 111 74
Cd (mg/L) 0.006 0.011
Cr (mg/L) 0.023 0.03
Cu (mg/L) 0.021 0.026
Fe (mg/L) 0.117 21.2
Hg (mg/L) < 0.0002 0.0085
K (mg/L) 2.86 2.27 5.58 2.77 1800
Mg (mg/L) 31.8 20.8 24.3 22.6
Mn (mg/L) 0.017 0.001 0.01 0.016
Mo (mg/L) < 0.02 < 0.02 < 0.02 < 0.02
See footnotes at end of table. 000143
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FMPC-0004-1
‘ November 15, 1990
ATTACHMENT PIV
(continued)
2046 2060 2060 2061 2094
3997 3696 3889 3890 3872
02/02/89 10/25/88 02/01/89 02/07/89 02/01/89
4 3 4 . 4 4
Na (mg/L) 10.6 13.6 10.6 109
Ni (mg/L) < 0.02 < 0.02 < 0.02 0.052
Pb (mg/L) < 0.002 < 0.002 0.004 < 0.002
Se (mg/L) < 0.002 < 0.002 < 0.002 < 0.002
Th (mg/L) < 0.007 < 0.003 < 0.003 < 0.004
U (mg/L) 0.171 0.25 0.292 0.0045
See footnotes at end of table. 000144
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FMPC-0004-1
November 15, 1990

ATTACHMENT PIV

(continued)

2095 3001 3001 3013 3013
3787 3783 3936 3703 3899
12/06/88 12/05/38 02/28/89 11/14/88 02/22/89
3 3 4 3 4

pH 8 7.1 6.3 8.4

Eh (mV) 81 NR 139

0, (mg/L) 9.5 0.7 19 NR

T CC) 11 13.5 7

Cl (mg/L) 60 21

F (mg/L) )

HCO; (mg/L) 352.2

NH," (mg/L) <0.1

NO, (mg/L) 715

P (mg/L) 0.063

50,2 mg/L) 17.5

Ag (mg/L) < 0.02

As (mg/L) < 0.002

Ba (mg/L) 0.05

Ca (mg/L) 100

Cd (mg/L) < 0.002

Cr (mg/L) < 0.02

Cu (mg/L) 0.014

Fe (mg/L) 0.032

Hg (mg/L) 0.0004

K (mg/L)B 2.5

Mg (mg/L) 233

Mn (mg/L) 0.003

Mo (mg/L) < 0.02

See footnotes at end of table.

PIT/GW/TS.1-2/11-15-90
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ATTACHMENT PIV

20617

FMPC-0004-1
November 15, 1990

(continued)
2095 3001 3001 3013 3013
3787 3783 3936 3703 3899 -
12/06/88 12/05/88 02/28/89 11/14/88 02/22/89
3 3 4 3 4
Na (mg/L) 24.6 244 11 45.7 18
Ni (mg/L) < 0.02 < 0.03 < 0.02 < 0.03
Pb (mg/L) < 0.002 < 0.002 0.004 < 0.002
Se (mg/L) < 0.002 < 0.005 < 0.002 < 0.005
Th (mg/L) < 0.006 < 0.003 < 0.006 < 0.003
U (mg/L) 0.015 0.015 0.011 0.490

See footnotes at end of table.

PIT/GW/TS.1-2/11-15-90
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FMPC-0004-1
November 15, 1990

ATTACHMENT PIV

(continued)

3014 3016 3062 3069 3094

3672 3686 3780 3663 3874

11/06/38 11/04/88 10/25/88 11/07/88 02/01/89

3 3 3 3 4
pH 7.75 7.6 7.9 7.6 7.1
Eh (mV) NR NR 99
0, (mg/L) 6.8 3.82 0.6
T C0) 11 9.5 15
Cl (mg/L) 19.9 24.5 140
F (mg/L) . . 0.32 0.18 0.13
HCO; (mg/L) 229.4 251.4 312.8 261.0 710.6
NH," (mg/L) <o01° 0.17 24
NO;™ (mg/L) 7.44 2.97 <04
P (mg/lL) < 0.02 0.662 0.88
50,2 (mgL) 514 92.7 412
Ag (mg/L) < 0.01 ) < 0.01 - < 0.0005
As (mg/L) < 0.002 < 0.002 < 0.002 < 0.002 0.003
Ba (mg/L) 0.03 0.040 0.063 0.050 0.382
Ca (mg/L) 74.1 82.9 106
Cd (mg/L) 0.004 < 0.002 0.007
Cr (mg/L) < 0.02 < 0.02 0.032
Cu (mg/L) < 0.01 < 0.01 0.02
Fe (mg/L) 0.03 0.10 443
Hg (mg/L) < 0.0002 < 0.0002 < 0.0002 < 0.0002 0.0023
K (mg/L) 1.94 2.53 2.16 2.15 1830
Mg (mg/L) 18.7 214 227 20.6
Mn (mg/L) < 0.001 0.050 0.396 0.10
Mo (mg/L) < 0.02 < 0.02 < 0.02 < 0.02
See footnotes at end of table.

000147
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FMPC-0004-1
. November 15, 1990
ATTACHMENT PIV
(continued)
3014 3016 3062 3069 3004
3672 3686 3780 3663 3874
11/06/88 11/04/88 10/25/88 11/07/38 02/01/89
3 3 3 3 4
Na (mg/L) 11.3 12.9 11.4 90.1
Ni (mg/L) < 0.02 < 0.02 < 0.02 0.066
Pb (mg/L) 0.003 < 0.002 0.010 < 0.002
Se (mg/L) 0.002 < 0.002 0.002 < 0.002
" Th (mgL) NR < 0,002 NR < 0.003
U (mglL) 0.008 0.041 0.005 0.0006

See footnotes at end of table.
000148
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FMPC-0004-1
November 15, 1990

ATTACHMENT P11V
(continued)

4097
3988
02/08/89

pH

Eh (mV)
0, (mg/L)
T (°C)

Cl (mg/L)

F (mg/L)
HCO; (mgL)
NH," (mg/L)
NO;- (mg/L)
P (mg/L)
50,2 (mglL)
Ag (mg/L)
As (mg/L)
Ba (mg/L)
Ca (mg/L)
Cd (mg/L)
Cr (mg/L)
Cu (mg/L)
Fe (mg/L)
Hg (mg/L)

K (mg/L)
Mg (mg/L)
Mn (mg/L)
Mo (mg/L)

See footnotes at end of table.

PIT/GW/TS.1-2/11-15-90
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P-IV-11



nrconsl O G

ATTACHMENT PIV
(continued)

4097
3988
02/08/89
4

Na (mg/L) 15.1

Ni (mg/L)

Pb (mg/L)

Se (mg/L)

Th (mg/L)

U (mg/L)

*NR - Analysis not reported.

bLt;‘,ss than sign indicates below detection 1

00G3: 0

PIT/GW/TS.1-2/11-15-90 P-1V-12
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mz 1990 5@?1

FENCE DIAGRAMS

Q contains fence diagrams for Operable Units 1 through 4 based on data from selected
: borings in each operable unit. The fence diagrams present a three-dimensional

e subsurface conditions within the glacial overburden. Appendix A contains the
cation of Soil forms from which the data in the fence diagrams were interpreted.
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CONDITIONS EXISTS ONLY AT THE LOCATION OF THE
TEST BORINGS AND IT IS POSSIBLE THAT SUBSURFACE
CONDITIONS BETWEEN THE TEST BORINGS MAY VARY
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STRATA INDICATED ON THE SECTIONS WERE

FROM AND INTERPOLATED BETWEEN THE TEST
BORINGS. INFORMATION ON ACTUAL SUBSURFACE
CONDITIONS EXISTS ONLY AT THE LOCATION OF THE
TEST BORINGS AND IT 1S POSSIBLE THAT SUBSURFACE
CONDITIONS BETWEEN THE TEST BORINGS MAY VARY
FROM THOSE INDICATED.
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OCCURRING AT THESE BORING LOCATIONS. ALSO
THE PASSAGE OF TIME MAY RESULT IN A CHANGE
IN- THE CONDITIONS AT THESE BORING LOCATIONS.

THE DEPTH AND THICKNESS OF THE SUBSURFACE
STRATA INDICATED ON THE SECTIONS WERE

FROM AND INTERPOLATED BETWEEN THE TEST
BORINGS. INFORMATION ON ACTUAL SUBSURFACE
CONDITIONS EXISTS ONLY AT THE LOCATION OF THE
TEST BORINGS AND IT IS POSSIBLE THAT SUBSURFACE
CONDITIONS BETWEEN THE TEST BORINGS MAY VARY
FROM THOSE INDICATED.
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THE PASSAGE OF TIME MAY RESULT IN A CHANGE
IN THE CONDITIONS AT THESE BORING LOCATIONS.
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FROM AND INTERPOLATED BETWEEN THE TEST
BORINGS. INFORMATION ON ACTUAL SUBSURFACE
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TEST BORINGS AND IT IS POSSIBLE THAT SUBSURFACE
CONDITIONS BETWEEN THE TEST BORINGS MAY VARY
FROM THOSE INDICATED.
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303317-M107 (GW) (PGH)
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TEST BORINGS AND T IS POSSIBLE THAT SUBSURFACE
CONDITIONS BETWEEN THE TEST BORINGS MAY VARY
FROM THOSE INDICATED.
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THE PASSAGE OF TIME MAY RESULT IN A CHANGE
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THE DEPTH AND THICKNESS OF THE SUBSURFACE
STRATA INDICATED ON THE SECTIONS WERE

FROM AND INTERPOLATED BETWEEN THE TEST
BORINGS. INFORMATION ON ACTUAL SUBSURFACE
CONDITIONS EXISTS ONLY AT THE LOCATION OF THE
TEST BORINGS AND IT IS POSSIBLE THAT SUBSURFACE
CONDITIONS BETWEEN THE TEST BORINGS MAY VARY
FROM THOSE INDICATED.
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