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DISCLAIMER 

This document is intenrirri to assist Regional and Statc personnel in evaluating ground-wan 
monitoxhg data from RCRA facilities. confornrancr: with this @dance is expected to result in 
statirrical methods and samplmg procedures that meet the rrgulatary starrdard of prorecting human 
health and the environment However, EPA will not in all cases limit its appmval of starisricai 

guichre is not arcgu&non (Le., it das not establish a standad ofconduEt which has the force of 

in using this guidance document as well as otha relevant infarmation in choosing a sraristical 
mctbod and sampling pmcedmc cha~ meet the rcgulatay rcquircmcn~~ for cvaiualing ground-water 
monitnringdaabmRCRAfaciMcs. 

methods and samplingpmdurcs to those that compcurwith the gurdancc set forrh herein. This 

law) and should bot be usedas Su& Regional andstaoc personnei thouidexacise ~cirdiscr&m 

This document has been reviewed by the o f f i c e  of Solid Waste, U.S. Eavironmental 
Prottction Agency, Washingme D.C a d  qpxuvai for public ah^ Approval dms not si- 
that thc cOnOcntS necessarily reflect the views d policies of the US. En-tal Rooection 
Agency, nor das mendon of orde names, commercial products, or publications constitute 
c ~ c I L f o r r e c o m m ~ f a r u r e .  
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STATISTICAL ANALYSIS OF 
GROUND-WATER MONITORING DATA 

AT RCRA FACILITES 

ADDENDUM TO INTERIM FINAL GUIDANCE 

JULY 1992 

1. CHECKING ASSUMPTIONS FOR STATISTICAL 
PROCEDURES 

1.1 NORMALITY OF DATA 
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The hecrim Fhal Guidance suggests that one begin by assuming thar the mi@ data arc 

Narmal prior to Outing the distributional assumptions. If the statistical test xjtcts the model of 
Nannality, thedtocan k t e d  forhgnarmalrcy instead by taking the natural lo@dun of each 
obscrvatton and rcpeahg the asf If the ori@ data are l~gnamal. taking thc naaaal logarithm 
of the obmuons  will result in data that a Normal. As a consequence, usts for Nonnaiity can 
also be used to rest for Loponnality by applying the tern to the iogariduns of the dara 

U n f m y ,  all of the available tms for Nolmality do at best a fair job of rejecting non- 
NcmnaI &a when tk sanrplt Size i s  small ( m y b  thrn 20 to u)ob%enmbn~). Tbatk, the em 
do not exbibit high degrees of &zid power. As such, small samples of unuaasfolmed 
&gnoxmd damcan be aEcepted by a test of Nolmality even though tbe sbcwncss of the dam may 

and ground-water dam in particular, suggests that a Lngnormai dimibution is generally more 
apprqmae as a default statisrical modcl than the Normal disuibution, a conclusion shsred by 
researchen at the United States Geological Survey (USGS, Dennis Hclsel, personal 
communication, 1991). Thne ais0 appears to be a plausible physical exphwion as m why 
pollutant comeamions so aft#l sctm to follow abgnonnal p a t ~ a n  (0% 1990). In Ott's model. 
pollutant sources arc randomly diluted in a multiplicative fashion through repcaai dilution axxi 
mixing with volumes of uoccmamirucrd air ar depending on the sumwdm ' gmedium. 
Such rvrdom and repured dilution of pollutant coxweamions can lead lMthematically to a 
bgnorm8l dirtributioxL 

i c a d m p o Q ~ c a n c l u s i o n s l a o c t .  E P A s e x p e r i e n c t w i t h e n v i r o a m t n ~ ~ o n d a t a ,  
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appired What Qts change is that the logarithms of Lognolmally diraibrrrd data arc m m  ncariy 
Normal in c-, thus sansfving a key assumption of many s-cal pcuhues. Bccausc of 
this fact, the same tests used to chcck Normality, if run on the logged data. bccumc tests for 
hgMnnaiiry. 

If the assumption of Lognmaiiry is not rejwed. ftather statistical analyses should be 
performed on the logged oboavarions, not the O x i g i d  data. If the bgnolmsl dismburion is 
rejected by a staristical resf one can tither test the Normality of the origrnal if it was nor 
aixcady donc, ar use a non-paramePic technique on the rankt of the obsavaoions. 

1.1.1 Interim Final Guidance Methods for Chccking Nornrrlity 
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The reai purpose of the CV is to estimate the skwness of a damset. not to test Normahty. 
T d y  Normal dm can have any nowzero Cocffkicnt of VariSrion, though the largcr thc CV, the 

the proparrion of negative values predicted by thc model. As such, a Normal dismburion 
with + CV may be a poor model forpositivc c o ~ l c c n ~ o n  dara Howvtr, if the c#ffiEitnt of 
Variation test it used on the logarithms of the data to test Lognormality, negative logged 
concamuions will often betxpecoed ntdifymgthedode used to supponthc CV test in the 
fimplrux. A betaerway toestimatt the skswxtes of adamset if to compute the Coefficient of 
S ~ d i r r e c t l y , a s ~ b e d b e l O w .  

CHI SQUARE GOODNESS OF FIT 

, 088QI.O 

. 
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If the Chi-squarc test indicaocs that the data arc not N m a l l y  disoibuted it !nay not be ckar 
what ranges of the dam most violatc the Normality assumption. Dcparntrts from Nolmaiuy in the 
middie bins arc given n d y  the same wight as departures fiom the wrmne taii bins, and all the 
depamxcs arc summed together to form the tCSt StatittiC. AS such, the Chi-rquarr test is not as 
powerful for &&g deparnrrts from Normality in the extreme tails of the data the arcas most 

even if then arc dtparruns in the tails, but the middle p h o n  of the data distribution is 

cases what kttn rests of Nox~nality would Because of thir foar aknahvc, more sensitive tests 

of Normaliry arc suggesotd below which can be uscd in conjunction with Robabrluy Ploo. 

& U) the validity of p-e& ~ s t s  iike the t-test or ANOVA (Mill=, 1986). F ~ t h m - ,  

. .  approximately Normal, the Chi-squarc test msy not ngistu as stamdl y signrficant in cmain 

1.1.2 Probability Plots 

As suggested within the Inrcrim Final Guidance, a simple, yct useful graphical test for 
Normality is to plot the data on probability paper. The y-axis is scaled to hpruent probsbiiiries 
ac#rrding to the Normal distribution and the data axe man@ in hawsing order. An o b d  

vdueisplontdasthey-coordinatt. Thtcraltiswns~u~d~~that,ifth~data~Normal,th~ 
pornts when ploned will approximaoc a suaight line. V i y  sppsxcnt CILN~S or bends indicate 
that the data do not follow a Normal disaibvtion (see Inmim F d  GuiArnrr pp. 4-8 to 4-1 1). 

V ~ U C  is p l o d  on ttrc x-& d ttrc praparei~a Of 0b-W ~ S S  tban OD eaEh Ob- 

Robability Plots arc pmicuhriy useful for tpoaing imgulantics within the data when 
compared to a spaSic disuiburid maid  like the Normal. It is easy to deftrmint whether 

exuunc mils. Probstdity Plots can altoiadiaue thc pxcscnce ofpossible outiiavalm that d o n a  
follow the basic p- of the dara and can show the presence o f  sigrrrficant positive or negarivt 
skewness. 

dcpanrats from N d t y  tlt occuring mmc or less in the middle ranges of the dam or in the 

Ifa (NarmJ) Robtbiliry Plot isdoncon theaambineddanfrrm d ulrtlls d N a m a l i t y  
is accepted. it implies that all o f  the dus came from thc same Narmal dismburion. Conquently, 
tach subgroup of the daxa ret (e.& obtavarions from distinct wells), has the saxne mean and 
standard deviation. If a Probability Plot is doae on the dur rcsidds (& value minus its 
subgroup mean) and is not a suaight line, the inmprePtion is marc complicated In this case, 
either the ~ ~ t r i A n r l z  art not Narmal, or thae is a sub- of the data with a Nannrl dimiburion 
but a differwt mean or rLdtid M o n  thrn thc other subgmups. Thc Robrbility Plot will 
i n d h ~  a dcvitdon h n  tht undniying Namaiity assnnpbn eitba way. 

080011 



The same Robability Plot uchque may be used to investigate whether a set of data or 
residuals follows the Lngnoamal disoibution. The procedure is the same, t-1 that one fmt 
rtpiaccs c8cb ohamion by its n a d  logarithm. After thc data have been avlsfarmed to their 
natural lognrithmr, the Robability Plot is con~u~cotd as before. The only dif€crencc is bat the 
~ t ~ d  logarithm of the oblrava!ions are used on the x-axis. If the data art Lognormal, the 
Probability Plot (on Nannal probabiiity paper) of the logarithms of the observations will 
approximateasmightline, 

m y  saristical softwale packages foaparonai compuocrs will consuuct Probability Plots 
autom-y with a simple command or two. If& software is awilable, that is ao need to 

consmct Robability Plots by hand or to obtain special graph paper. The plot itself may be 
gencrattd somewhat diffcrmtly than the method &scribed a h .  in some packages, the obscrved 
vrlue is ploertd IS befollc on the x-axis. The y-axis, however, now repxcstnts the quantik of the 
Narmal distribution (often referred to as the "Nonnal scan of the o b d o n " )  colrtspondmg 10 
the caun&ave probability of the obtavcd value. The y i m o d m ~ ~  * is often computed by thc 
following fanrruk: 

EXAMPLE 1 

Deramir# whether the fobwing dam set follows the N m a l  dismbution by using a 
PiobabiulyPla 

008022 
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Nickel Conanmaon @pb) 
Moarh well 1 weilz well 3 well 4 

58.8 19 39 3.1 
942 

1 
1 .o 81.5 15 1 

85.6 
2 

262 33 1 27 3 
5 8.7 64.4 578 637 
4 56 14 21.4 10 

SOLUTION 

Step 1. List the measured nickel conctntcahon~ in ardcr hm lowest to highs 

1 
3.1 
8.7 
10 
14 
19 

21.4 
27 
39 
56 

58.8 
64.4 
8 13 
85.6 
151 
262 
331 
578 
63l 
942 

1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

3 0 

5 
10 
14 
19 
24 
29 
33 
38 
43 
48 
52 
57 
62 
67 
71 
76 
81 
86 
90 
9s 

- 1.645 - 1.28 - 1 .OS 
-0.88 
-0.706 
-0.55 
-0.44 
-0.305 
-0.176 
-0.05 
0.05 
0.176 
0.303 
0.44 
035 
0.706 
0.88 
1 .OS 
1.28 
1.645 
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PROBABILITY PLOT 

7284 

9 
f 
s 
t 
U 

1.1.3 Coefflcicnt of Skewness 



Tbe Skewness C#fficient may bt computed using the foilowing furmula: 

1 -&(xi - -52y 
YI =4 

where the nmaamr represents the average cubed hsidual and SD &nom the standard deviation 
of the measurements. Most statisdcs c m p u t c ~  packages (e.& Minitab, GEO-EAS) will compute 
the Skewness cocffidcnt a:.metiPzlly via a simple coxmad. 

EXAMPLE 2 

Using the data in Example 1, COLLI~UIC thc Skewness Coefficient 10 rest for approximate 
symmetry in the data 

SOLUTION 

step 1. 

socp 2. 

step 3. 

1.1.4 

Compute the mean, swdard deviation (SD), a d  average cubed rtsidrlal for the nickel 
C Q Y x n ~ :  

The Shapiro-wilL Test of Normality ( d o )  
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substantial weight to evidence of mn-N=a&ty in the tails of a disuibutk where the mbustntss 
of starkicd wts based on the Normality a m p t i o n  is most severely affected. The Chi-square 
test- depanaucs frorn Normaiityin the tails neariy the same as dep;anaes in the middle of a 
didbution, and so is less sensiave to the types of non-Normality that a r ~  most crucial. One 
cannot tell from a significant Chi-square goobrtss-of-fit test what son of non-Nonnaiiry is 
inriirntrrl 

ShapbWm o c ~ f  sraristic cw) will tend to be large when a Robability Plot of the data 

.;ldicaocs a nearly saaight line. Only when tht plomd data show si-t beads o t c ~ s  will 

Nlcamaiity available (Miller, 1986; Madansy, 1988). 

the tCSt sta!isIic k small. ne ShapKO-Witk testis conskkd to be one of the very best tests of 



SOLUTION 

Step 1. Order the data from smallest to largest and list, as in the foilowing table. MSO list the 
damin reverse ardaaiongndc the first column. 

Step 2. C ~ ~ P U ~ C  the differtnat yn-+l)-X(i) h d ~ m n  3 of thc table by subaacting coiumn 1 
from column 2. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 .o 
3.1 
8.7 

10.0 
14.0 
19.0 
21.4 
27 .O 
39.0 
56.0 
58.8 
64.4 
815 
85.6 

151.0 
262.0 
331.0 
578.0 
637.0 
942.0 

942.0 
637.0 
578.0 
331.0 
262.0 
15 1.0 
85.6 
8 15 
64.4 
58.8 
56.0 
39.0 
27.0 
21.4 
19.0 
14.0 
10.0 
8.7 
3.1 
1.0 

941.0 
633.9 
569.3 
321.0 
248a 
132.0 
642 
545 
25.4 
2.8 

-2.8 
-25.4 
-545 
-642 

-1 32.0 
-248.0 
-321.0 
-5693 
-633.9 
*la 

,4734 
.3211 
2565 
.2085 
.1686 
.1334 
,1013 
.0711 
.0422 
.0140 

445.47 
20355 
146.03 
66.93 
41.81 
17.61 
650 
3.87 
1.07 

0.04 
b432.88 

S a p  3. 

S a p  4. 

Cornpure k as the ~ptawtinlqcricss than orequai to d2. Since a-20, k=10 in this 

Look up the coefficients a+i+l fmn Table A-1 md list in column 4. Multiply the 
c i m m c c s i n a n i a m n 3 b y t h c ~  in column 4mdaddthc fint kpmducts to 
get qprntity b. In this ~ l t .  br93288. 

exmnpk 

s-5. campraetherpadrrddeviitionofthtramplc,sD-2s9.72 Tben 

w-[rziGmr 932gg = 0.679. 
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origmal concentration data art used in this example to illusuate how the assumption of 
Nohmalitycan bercpxcd-) 

1.13 The Shrpiro-Fmnai Test of Normality ( ~ 5 0 )  

The Shapiro-Wilk est of Normality can be used for sample Sitts up to 50. When tht sample 
& tfre Shapb- tcst (Shapiro and isbrgcrtban50,aslight mdScanon of &e 

Franc41972)cankustdintrcad 

n + l  mi - 

000018 



1.1.6 The Probability Plot Correlation Coefficient 

One 0th rloanatiVe test for N d t y  that is roughly equivalent to tht Shapb-Wilk and 
S h a p b F r a n d r  tests is the Robability Plot Cornlation Coefficitnt test described by F i b e n  
(1975). This ~ t s t  fits in perfectly with the usc of Rubability Plots. becatue the essence of the test 
is IO compute the common amelation cotffident for pourts on a Robabiiity Plot. Since the 
carrtlatiaa coefficient is a measun of the iintariv of the points on a scatt@ot, the Robabili~~ Plot 
Cumhion c#fficient, iik thc Shaprro-Willt test, will be high when thc plotted points fall dong a 
suaight lint and low when there arc signifcant bends and curves in the Probability Plot. 
Comparison of the Shap~~~-Wilk a d  Rbbabi l i~  Plot comiation c#ffici=t tests has indicated 
vcry similar statistid power far dcpxting non-NcnmaJity (Ryan andJoina, 1976). 

The consuuction of the est starisdc is somewhat different fram the Shapr~-W* W, but not 

fur sample s k t  up to nolOO (and axe hproduced in Table A 4  of Appendix A). The Robability 
plot corrrianon (3dkka1 may be computed as 

difficulttoimplanent A l s o * L a b l c d c r i r i c a l v a l u # f a r t h e ~ ~  bawbeendaived 

r =  

far 1 < i < n 

080013 



When warking with a complete -pie (i.e., containing no nondcttcrs or censored values), the 
a v a a g  valut n-0, and SO the formula for the Robability Plot Carclanon Coefficient simplifies 
to 

EXAMPLE 4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1.0 
3.1 
8.7 
10.0 
14.0 
19.0 
21.4 
27.0 
39.0 
560 
58.8 
64.4 
81.5 
85.6 
151.0 
262.0 
33 1 .O 
578.0 
637.0 
9420 

~ 

. O W  

.08262 

.13172 

.la082 
22993 
27903 
.328 14 
.37724 
.42634 
,47549 
32455 
51366 
-62276 
A7186 
.72097 

.81918 

.86828 
,91738 .ww 

.nom 

-1.8242 
-1387l 
-1.1 183 
-0.9122 
-0.7391 
-0.5857 
-0.4431 
-03127 
-0.1857 
-0.0616 
0.0616 
0.1857 
03127 
0.4431 
0.5857 
0.7391 
0,9122 
1.1 183 

1.8242 
1.3877 

-1.824 
4.302 
-9.729 
-9.122 
-10.347 
-1 1.129 
-9.524 
-8.444 
-7.242 
-3.448 
3.621 
11.959 
2S.488 
38097 
88.449 
193.638 
301 -993 
646.376 
883.941 
1718.408 

3.328 
1.926 
1.251 
0.832 
0.546 
0.343 
0.198 
0.098 
0.034 
0.004 
0.004 
0.034 
0.098 
0.198 
0.343 
0346 
0.832 
1 3 1  
1.926 
3.328 
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Step 4. Compute the Pmbabiliry Plot Cantianon Coefficient using the simplified formula for r. 
W h U C  Sb259.72 and C&. 1375, to get 

= 0.819 3836.81 
(4.1375)(259.72h119 

r =  

Step 5. Compare the computed value of ~ 4 . 8 1 9  to the 5% Critical value for sample size 20 in 
Table A-4, namely R.o530=0.950. SinCe r c 0.950, the sample shows sigmfkant 
evidenct of non-Nmality by the probabiluy Plot bmianan Coefficient est The daa 
should be Pansfunned using naaaal logs and the corrtlanon cocfficicnt recalculated 
befonprorrcdngwith~srariseicaianalysiJ. 

EXAMPLE 5 

The dam in Exampies 1,2,3, and 4 showed signifhnt evidence of non-Norxnaiity. Instcad 
of fint logging the conccanations before e h g  far Nannaiity, the kpd data ~m utcd This 
was &ne to illusuatc why the Lngnonnal distribution is usually a btna dtfault modcl han thc 
Ncamal In this exampic, use the saxat dam OD datnnurt * whetherthc rneasmmcnrr berm follow a 
Lognormal disaibution. 

1 4.07 2.94 3.66 1.13 
2 0.00 4.40 S.02 6.85 

3.30 4.45 
3.06 2.30 

3 so57 ' 5.80 
4 4.03 z64 
5 2.16 4.17 6.36 6.46 

SOLUTION 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1s 
16 
17 
18 
19 
20 

0.00 
1.13 
2.16 
2.30 
2.64 
2.94 
3.06 
3.30 
3.66 
4.03 
4.07 
4.17 
4.40 
4.45 
5.02 
5.57 
5.80 
6.36 
6.46 
6.8s 

5 
10 
14 
19 
24 
29 
33 
38 
43 
48 
52 

-1.645 - 128 - 1.08 
-0.88 
4.706 
-0.55 
-0.44 
-0.305 
-0.176 
-0.05 
0.05 

57 0.176 
62 0.305 
67 0.44 
71 
76 

055 
0.706 

81 0.88 
86 1.08 
90 1.28 
95 1.645 
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Method 3. Shapiro-Wilk Test 

Sup 1. 

- .  1284 

order the logged data from smallest to largest and list, as in following table. Also list 
the dam in reverse ordtr and compute the differences x ( ~ . ~ ~ ) - x ( ~ ) .  

~~ 

i LN(yi)) WY,i+l)) bl bi 
1 0.00 6.85 ,4734 3.24 
2 1.13 6.46 .3211 1.71 
3 2.16 6.36 .2565 1 .OS 
4 2.30 5.80 .2085 0.73 
5 2.64 5 3 7  .1686 0.49 
6 2.94 5.02 .1334 0.28 
7 3.06 4.45 .1013 0.14 
8 3.30 4.40 .0711 0.08 
9 3.66 4.17 .0422 0.02 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

4.03 
4.07 
4.17 
4.40 
4.45 
5.02 
5.57 
5.80 * 

6.36 
6.46 
6.85 

4.07 
4.03 
3.66 
3.30 
3.06 
2.94 
2.64 
2.30 
2.16 
1.13 
0.00 

.0140 p9p 
b=7.77 

stcp 2. 

stcp 3. 

sap 4. 



PROBABILITY PLOT 
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Method 2. Coef'ficient of Skewness 

Seep 1. Cslculae the mean, SD, and average cubed xtsidds of tfre natural logarithms of the 
dam 

X = 3.918 log(ppb) 
SD = L802 log(ppb) 

Y, = -,'.w t 4 . 2 4 4  
(.%)S(LSm)' 

080024 
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Mi 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.00 
1.13 
2;16 
2.30 
2.64 
2.94 
3.06 
3.30 
3.66 
4.03 
4.07 
4.17 
4.40 
4.45 
5.02 
5.57 
5.80 
6.36 
6.46 
6.85 

.OM06 

.08262 

.13172 
-18082 
.22993 
.27903 
.32814 
.37724 
,42634 
.47545 
.52455 
3366 
.62276 
.67186 
.72097 
.77007 
.81918 
36828 
.9 1738 
.96594 

- 1.8242 
-1.3877 
-1.1 183 
-0.9 122 
-0.739 1 
-0.5857 
-0.445 1 
-0.3 127 
-0.1857 
-0.06 1 6 
0.06 16 
0.1857 
0.3 127 
0.445 1 
0.5857 
0.739 1 
0.9122 
1.1183 
1.3877 
1 A242 

O.OO0 - 1.568 
-2.4 16 
-2.098 
-1.951 - 1.722 - 1.362 - 1.032 
4.680 
-0.248 
0251 
0.774 
1.376 
1.98 1 
2.940 
4.117 
5391 
7.112 
8.965 
12.496 

3.328 
1.926 
1.25 1 
0.832 
0.546 
0.343 
0.198 
0.098 
0.034 
0.004 
0.004 
0.034 
0.098 
0.198 
0.343 
0.546 
0.832 
1.25 1 
1.926 
3.328 

= 0.991 32226 r= 

Step 5. Comprne the value of d.991 to the 5% critical value for sample siac u) in 
Table A4,-1mwly Ra+SSO. Since r > 0.930, tbe logged dan sbow w sigmfiamt 
evidence of non-Nonnaiity by the Probability Plot Carrelstion Coefficient t e s t  
=, hlpulamriity ofthe arighai damcopld k assumed in subsequent nstistical 
Ff=d=f= 



1.2 TESTING FOR HOMOGENEITY OF VARIANCE 

One of the most hparrant assumptions for tk paramemc analysis of variance (ANOVA) is 
that the diffemt gmups (e.&, different web)  have approximaotiy the same variance. If this is not 
the case, the powr of the F-test (its abiiiv to detect dif€mnces among the group means) is 
rtduced Mild diffmncts in variana slrc not too bad. The effect becomes noticeable when the 
largut andsmallest group variances differ by a d o  of about 4 and becomes quire severe w k n  the 
ratio is 10 or m m  (Milliloen and Johnsoa, 1984). 

Tht pr#xdutr: suggested in the EPA gurdance docwrenr, Banleds tea is one way to test 
whether tk sample dam give evi&nce ttrru the WCU groups have different variances. However, 
B ~ C K ' S  test is sensitive to non-Nmnality in the ciata and may give misitading rtsults unless one 
knows in advance that the data arc approxharcly Nolmrl (Millilten and Johnson, 1984). As an 
altanativc to Banleu's test, two pr#xbttrcs far testing homogeneity oft& variances arc dcsnibed 
below that arc less sensitive to non-Noxmaiity. 

1.2.1 Box Plots 

Box Plots were first developedfarcxpiantay damanalysis as a quick way to visuaib the 
"Sprrad" ordispcmon within a data set In the coatext of variance testing, tmc can consmct a Box 
Plot for each well group and comparrc the boxer to see if the assmnpticx~ ofcqor) v1viances is 
hasonable. Sucb a cornpaxison is not a formal tertprocedm, bot ircasiertopafmn and is often 
s-tfcr CkCblg tht Ip#Ip 8 s S m p x k  

Y 
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would bc found as 50*(10+1)/100=5.5. The median would then be compuud as the average of 
the 5th and 6th oldaed values, or (15+17.1)/2=16.05. 

Likewise, the position of the lower q d e  would be 25*(10+1)/100=2.75. Calculate the 
average of the 2nd and 3rd ordacd obstrvatiom to esrimatc &is para&, Le., (4+62)/2=5.1. 
Since the upper quartile is found to be 23.5, the length of Box Plot would be the difference 
between thc upper and lower q d e s  or (23.5-5.1)=18.4. The box itself should be drawn on a 

Thrtt harirontal lines are drawn for each A, me b e a c h  at the 10- and upperqUarriits and 
anochcratthemaiian mcentrarios Verticaicoanecring iincs arc drawn00 complete the box. 

p p h  with the y-axis m t n t i n g  C O = = ~  and the denoting the WCUS bdng plotEd 

Most sntistics packages can dihctly calculate the statistics needed to draw a Box Plot. and 
many will consauct the Box Plots as well. In some computer packages, the Box Plot will also 
have two "whiskers" extending from the edges of the box. Thcsc lines indicate the positions of 
e x m e  values in the data set, but generally should not be used to approximate the o v d  
dispersion. 

If the box length foreach group is less than 3 times the hgcb of the box, the sample 
variances arc pbably  close eaoug.4 to assume equal group vazhccs. If, howevn, the box length 
for any p u p  is at least mplt tht length of the box for another group, the variances may be 
signxficrntly different (Kirk Camaon, SAIC, personal communication). In that case, the data 
should be frrnha checked using Lcvent's ocst -bed in the following &on. If Lcvene's test 
is siwcant, the dam may need 00 be aansfmed or a non-panmeoic rank proctdun considtrtd 
k f o r c ~ g w i t h f r n t h a a n a l v r ; .  

EXAMPLE 6 

~ n i c c o n a c n r r a n o a  . @pin) 
Month well 1 well 2 well 3 well4 well5 Well 6 

1 22.9 2.0 2.0 7.84 24.9 0.34 
2 
3 
4 4.1% . 52 23 2.0 27 1.2 

3.09 125 109.4 
35.7 f.% 4 3  

9.3 
2S.9 

1.3 
0.75 

4.78 
2.85 

088027 
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SOLUTION 

sup 1. 

sup 2. 

step 3. 

step 4. 

Compute the 25th. Joth, and 75th percentiles for the data in each well group. To 
calcula~~ the pth pemnrile by hand. order the data from lowest to high= Calculate 
p*(n+l)/100 to find the ordtrcd position of the pth percentile. If necessary, intcrpola~~ 

Using well 1 as an example, n+1-5 (since that arr 4 data values). To calculart 25th 
percent&, compute its ordaed position (k., rank) as 25*5/100=125. Average the 1st 
and 2nd ranked values at well 1 (Le., 3.09 and 4.18) to find an c s r i m d  lower qwxtilc 
of 3.64. This estimate grves the lower end of the Box Plot The uppcr end or 75th 
pacclldle  ill be computed simihuiy as the avQase of the 3rd and 4thranked values, or 
(22.9+35.7)t2=29.3. The median is the average of the 2nd and 3rd ranked values. 
giving an estimaoe of 13.14. 

Construct Box Plots foreach well w, linedup side by side on the same'axcs. 

bawr#n sample VaAUcS tD estimm the dwrtd paccnrilc. 

l20 

100 

80 

(0 

40 

m 

0 

BOX PLOTS OF WELL DATA 

1 2 3 4 5 

WELL 
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1.2.2 Lcvcnc's Test 

Lcvent's test is a mare formal pmcake thanBox Plorr for =sting homogeneity of variance 
that, unliLr Bartien's tcsf is not sensiuvt to non-Normality in the data Lcvene's test has been 
shown to have power neariy as great as Bartleds test for Nonnally dismbuted data and power 
superior to Banleu's fur n o n - N d  data v i k e n  and Jotursolr, 1984). 

To canduct hvcne's t e ~ f  ht compute the new variables 

wh- xij represents ttte jth Val= fmm tht ith well d xi ir the ith ~ l l  mean. The values zij 

rrpsent the absolute vaiues of the usual residuals. Then ma a standard one-way analysis of 
variance (ANOVA) on the variables f i j .  Ifthe F-en is sign5cant. reject the hypothesis of equal 
 UP V ~ U S .  Otherwist, pr#xed with o f  the Xjj'S as initially planntd 

EXAMPLE 7 

Use the data from Exampic 6 toconbrct Levtnt's otst ofequal varhnccs. 

SOLUTION 

stcp 1. CalculppcthcgraupmeMfarerrhw31(Xi) 

Well 1 mean = 16.47 

Well 2 mcu~ = 15.76 

Well 3 mean = 29.60 

Well4rnun= 1126 

Well 5 man = 13.49 

Well6mean= 229 



Draft lhW3 

Absolute €&duals 
Ivhnh well 1 well2 well 3 well4 well5 Well 6 

6.43 
13.38 
19.23 
12.29 

13.76 
14.5 1 
7.96 

36.24 

18.12 

27.6 
79.8 
25.1 
27.1 

39.9 

3.42 
1.96 

14.64 
9.26 

11.41 
12.19 
12.74 
13.51 

7.32 12.46 

1.95 
2.49 
0.56 
1.09 

1.52 

O V d l  
M ( f )  = 15.36 

step 3. Computt the Sums of squahs far the absolute residuals. 

S k u  = (N-1) SDz2 6300.89 

ss,, = c,.,z -' - Nz' = 3522.90 

ss- = SL~-SS~ILY = 2777.99 

ANOVATabk 
S- sum-of-saurres df Mcan-SoUae F - W  P 

5 
18 

704.58 
154.33 

, 
I 436 0.007 

, I n .  . , . .  000030 
9. 



2. RECOMMENDATIONS FOR HANDLING 
NONDETECTS 

The bask recommendations within the Inttiim Final Guidance for handling nondctecr 
analyses include the following (sec p. 8-2): 1) if less than 15 percent of all samples axt nondcrect. 
rtplace each nondctect by half its dcttction or quanatation limit and procted with a parametric 
analyns, such as ANOVA, Tolerance Limits. or prrdiction -0; 2) if the percent of no&- is 
between 15 and 50, either use Cohen's adjustment to the sample mean and variance in order to 

praxui with a parametric analysis, or employ a non-paramemc procedrat by using the ranks of 
the obseivations and by a w i n g  all nondetects as ad values; 3) if the percent of nondctcm is 
gwucr than SO percent, use the Test of Ropdoru. 

As to the fmt recommendation, experience at EPA and research at the United States 
Gcologxal Suivty (USGS, Dennis Hclsel, personal communication, 1991) has indicated that if 
less than 15 percent of the samples are n o r d e w  the xesults of parameaic statistical ~CSK will not 
bc subsmnWy a&cotd ifnondctccts arc replaced by halftheirdeoection limits. When more than 
15 pcrant of the samples are nodew however, drc hading of nondereco is rnm crucial to the 
outcome of statistical pmcedmcs. Indeed, simple substitution methods m d  m @om pourly in 
stansad ocsrs when tht n o n d e a e c t w  is substandal (Gilliom andHelsei, 1986). 

. .  

Even withasmallproporrion ofnondeoectr, however, caxc should be tlrken when choosing 
bctwecn the method detection limit (MDL) and the pramcal quanutation limit (PQL) in 

byanalytical C- g "nondeact" concmmions. Many nondecem sre chammend 
labcmorics with one of three dam qurlifier figs: Y," Y," ur '2." Samples with a "u" data 

could not be o m  ordistingpkhed from "background n d "  during lab analysis. Inorganic 
samples with an "E" flag andorganic samples with a "J" flag may ormay not be repaned with an 
esumaxi W If no -cm is  emmad, t h e  ttmpdct repmeat "M but not 
quanrified" m- In this asc, ttrt a c d  cuncemdon is assumed to be posiuvc, but 
somewbere betarsen mad the PQL. Since 111 of tbtre n o n d e c t s  may a r m y  not have actual 
positive concenua!ioru between zam llLd the PQL, the s u m  substhion far pammepic 

. .  

qual i t ierrepre~t"wdaecrod"~~rneaningtf iat thef ignaldrancpcrrso  'cofthatanalytlt 

~ ~ i s a D ~ ~ e r h n a a d c p c a b y o n e - h r l f t h e p Q L ( r w r e , h o a r e w , ~ " E " a n d  

"J" r u n p l e r r r p a r p t d w i t h t r d m r n d ~ n t  thouldberruoed farsptirticrl-,as 

Mtid rncmrwmts. S u b s h h  of oxmbtlf thc PQL is far t ksc  samples). 



In no case should nondctect concentmuons bc assumed to be bounded above by the MDL. 
The MDL is cStima&d on the basis of ideal laboratory conditions with idtal analp samples and 
dcrts not account farm ar other inttrfertnces e n c o d  when anaiyzing speafic, actual field 
samples. For this reason, the PQL should be taken as the most reasonable upper bound fur 
nondtotct conccnuations. 

It should also be noted that the disnnctbn betwan "undetected" and "detected but nor 
quantified" measurements has more specific implications for rank-based non-parametric 
procedures. Rather than assigning the same tied rank to all nondettcts (see below and in Section 
31, "detected but not quancificd" mtarmments shod be given mrankr than those assigned to 
"undcttcttd" samples. In fact the two types of nondcttcO should be mued as two groups 
of o f d  o b d o n s  for use in the Wilcoxon and Kruskal-Wallis non-parame& proadum. 

2.1 NONDnECTS IN ANOVA PROCEDURES 



&taxian limit The Test of Ropamons ignores mfmarion about conccnwtion magnrardcs, and 
h- is p~my kss powerful than a non-parameoic rank-based test like the Wilcaxon Rank-Sum, 
even after sdjuthg for a large fraction of tied obsmtations (e.& noodeteas). This is because the 
ranks of aAatr&t prescm edAi t i c lna i in fdn  about tfie rciarive magnmdcs of the cmccnmm 
values. infannation which is lost when all obsmations rn s c a d  as 0's and 1's. 

Another drawback to the Test of Propomons, as pr~senred in the Interim Fd Guidance, is 
that the proccdure rtiies on a N m a l  probability approximation to the Binomial disuibution of Os 
and 1's. This approximation is recommended only when the quantities n x (9bNDs) and n x (1- 
96NDs) arc no smaller than 5. If the percentage of nondetects is quite high and/or the sampie sizc 
is fairly small. these conditions may be violated, lrnriing pooenpially to inaccaxarc ICSU~K. 

Comparison of the Test of Propomom to tht Wilcoxon Rank-Sum test shows that for small 
to moderatc ppcmions of nondctuxs (say 0 to 60 paeart), the Wiicoxm Rank-Sum procedrat 
adjusted for ties is more powafuI in idcnofylng real coaccnmicm diffencnces than the Test of 
Propamons. When the percentage of nondctects is quire high (at least 70 to 75 percent), the Test 
of Proporaons appean to be siightly more powerful in some cases than the Wilcoxon, but the 
rrsuitt of the nvo ttsu almost always lcad to the same conciusion, so it makes sense u) simply 
recommend the Wilcoxon Rank-Sum test in dl cases where noadctects conrtitutt more than 15 
prccnt of the rampla. 

2.2 NONDETECTS IN INTERVALS 

' 080033 
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that ail tk ciam ( d e w  and nondcmxs) m e  from the same Normal of Lognormal populanon, but 
that nondeoect vdues have been "censored" at their detection limits. This implies that the 
contaminant of concern is present in nondetcct samples, but the analytical equipment is not 
sensitin to CoLICcntrBtions lower than the detection Iimit Aitchson's adjustment, on the other 
hand, is co~uuuacd on tht assumption that nondeteclsamples axe free of contamidon, so that id 
nondetccts may be regarded as zero concentrauons. In some Situauons, particularly when the 
analyre of concern has ban detecred infrcquentfy in Wjpd rneamrtments, this assumption 
may kpraad.evcn if i t  cannot be vdidckcdy. 

Befm choosing between Cohen's and Airchison's approaches, it should be cautioned that 
Cohcn's adjustment may not gin valid results if the proporcion of nondetects errnula 50%. In a 
case study by McNichoIs and Davis (1988), the falsc posiuve rate a~rociaued With the use of t-tests 

b a d  on Cohen's method ~ o 3 t  subsmnWly when the bmhm of nor&- was gmum than 50%. 
Wnrrurrari because the adjusredestimues of themerndsma&ddevirrion ~ I C  mare highly 
coirtlitrA as the percentage of nondetccts incmscs, lading to less -le staristical tests 
( i n d u d i n g ~ i n ~ o e s t t ) .  

2.2.1 Cawred rnd htects-only Probability Plots 



acceptable and Cohen's adjusrment can be made to estimate the sample mean and standard 
deviation. If the Censored Robability Plot has signxficant bends and cmes ,  particularly in one or 
both tails, one aught consider M o n ' s  innead 

To tcst the assumptions of Aitchison's method a Derccts-Only Robability Plot may be 
consoucted In this case, nondctccts arc complettly ignored and a standard Probability Plot is 
corn& wing Q& the -. Thus, cumulative probabilities or Nonnal 
p a n t i l t s  c~mpured only for the ordtred dctccud values. Comparison of a Dcmxs-Oniy 
Probability plot with a Ccnsod Pibbability Plat indicate that thc same number of points and 
concenuarion values am plotted on each p p h .  However, different Normal quantilcs art 
assoCiatcd with each detected conccnp8tioa. If the Derects-only Robability Plot is Fcasonably 
linear, then the assumptions~underlying Airchhn's adjustment (k, that "nondetectS" represent 
~QD conccnuations, and that deteco and nondetects follow separatc probability disnibutions) art 
probably mumable. 

If i t  is not clear which of the Ccnsaxed or Detecrs-only hbabii i ty  Plots is mart linear, 
Robability Plot cc#rclation Coefkknts can be computed for both qproacks (no= that the 
camlaxions should only invoivc the points actually p l o w  that is, detecoed -oris). The 
plot with the h i g h  conclarion coefficient will repsent the most linear trend. Be careful. 
hawever, to use ocher, non-mtisthl judgments to help decide which 0 f C o h d s  u3d Aitchison's 

* 'softhe underlying assumptions appears to be most xeasudlc based an the specik ChnaEoCnmc 
data SCL It is also likely that there Probability Plots may have to be connnrcted on the logarithms 
c' the dam instead of the onginal values, if in fact the most appropriatr underlying distribution is 
tk hgnd instead of the Namal  

EXAMPLE 8 
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Zinc ConcenaarionS @pb) at B a c k g o d  Wells 
sample well 1 Wd2 well 3 W d  4 well 5 

1 <7 <7 c7 11.69 c7 
<7 12.85 10.90 e7 

<7 
11.41 

14.20 <7 
2 

13.70 
11.15 

c7 
1136 9.36 12.22 

3 

13.31 
c7 

e7 11.05 
4 

<7 
12.35 

<7 
<7 12.00 e7 

5 

c7 13.24 c7 
6 10.00 

(I 8.74 
10.50 

c7 
7 15.00 
8 <7 12.59 

SOLUTION 

step 1. 

step 2 

step 3. 

Pool together the data fiwm the five backmud wells and list in oldn in the table 
below. 

To C O I U ~  the Cerucxul Robability plot, ccnnpwt the probabilities i/(n+l) using the 
combined set of detects and nondctccts, as in column 3. Fmd the Normal quantiles 
associated with these probabilities by applying the inverse standard N m a l  

To colutzpct the I)eaeco-Only Robability Plot, compute the pxobabilitks in column 5 
using only the detected dnc values. Again apply the in- standard Normal 
aanrfarmaaon 10 find the astociatcd Normal quantiles in column 6. Note that 
naadeoectsarreigncucdcampladyinthismeth~ 

transfarnlath *I. 

000036 



-(i) Zin~Con~.  C h s d  Normal Det#xs-Only N a r d  
O b )  Robs. - Robs. Quanaics 

1 <7 .024 -1.971 
<7 . a 9  - 1.657 

-1.453 
2 

<7 .O73 - 1.296 
3 
4 <7 .098 
5 <7 .122 -1.165 
6 <7 .146 - 1 .os2 
7 <7 .171 -0.95 1 
8 <7 .195 -0.859 
9 .7 -220 -0.774 

10 <7 .244 -0.694 

12 <7 .293 -0.546 
13 <7 .317 -0.476 
14 <7 3 1  -0.408 
15 <7 .366 -0.343 
16 <7 .390 -0.279 
17 <7 .415 -0.2 16 
18 <7 .439 -0.153 
19 <7 ,463 -0.092 
20 <7 .488 -0.03 1 

.048 - 1.668 21 8.74 .512 0.03 1 
22 9.36 .537 0.092 .095 ' -1.309 
23 10.00 S61 0.153 .143 -1.068 
24 10.50 .585 0.216 .190 -0.876 
25 10.90 .610 0.279 2 3 8  -0.7 12 
26 1 1.05 .634 0.343 .286 -0566 
27 11.15 .659 0.408 .333 -0.43 1 
28 11.41 .683 0.476 .38 1 -0.303 

.707 0546 .429 -0.180 29 11.56 
30 11.69 ,732 0.618 .476 -0.060 
31 12.00 .756 0.694 524 0.060 
32 12.22 .780 0.774 .57 1 0.180 
33 12.35 .805 0.859 .619 0.303 
34 12.59 .829 0.95 1 .667 0.43 1 

. 35 12.85 .854 1 .os2 714 0.566 
36 13.24 .878 1.165 .762 0.712 
37 13.31 902 1.296 .810 0.876 
38 13.70 -927 1.453 .857 1.068 
39 1420 .95 1 1.657 .905 1.309 
40 15.00 .976 1.971 .952 1.668 

11 <7 ,268 -0.618 
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... . 
. I  

sup 5 .  

detected vducs: the Censand hbabiiity Plot has a cornlation of r=.969, whiie the 
Deoccrs-only Probability Plot has a camlation of r=.998. 

Bcuusc the Dctects-only Probability Plot is substantially m a  linear than the Censud 
pr0-v plor it m y  be appmpnaa toconsidcrdamsandnolrdtoectsasazisingfrom 
s-y distinct disuibutiom, with no&- representing "moo concentrations. 
Thcrtfort. Aitchison's adjustment may lead to better estimates of the m e  mean and 
standard deviation than Cohen's adjusunent for a n d  data. 

CENSORED PROBABILITY PLOT 

*y 
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DETECTS-ONLY PROBABILITY PLOT 

b i 1 I I i I 1 

8 9 10 11 l2 11 14 15 16 

p n c c o n c e r u r u n o ~ ~ ~ ~  

2.2.2 Aitchison's Adjustment 

To actually compute Aitdrison's adjusuncnt (Aitchison, 1955), it is assumed that the dcrtcttd 
sampies follow an underlying Normal distribution. If the detccts an Lognormal, computc 
Artchn's adjustment on the loganthms of the dam irueerd Let d d  ncmdetuzs d let n=total U 
of samples (dctecu and nomierects combined). Then if K' and s9 denore xecspecavely the sample 
mcanandstMdarddtviationofthcdcrecredvrlucs.thcadjustedodmcancan becstimaptd as 

The general formula for a panmeuic stasucd * inoervrl adjusted for nondeoecrt by Aitchison's 
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EXAMPLE 9 
i b '  1284 

In Example 8, it was determined that Aizchison's adjusrment might lead to more apprppnatt 

esrimapts of the true mean and standard deviation than Cohen's adjustment Use the data in 
Example 8 to compute Aiuhhn's adjustment 

SOLUTION 

Step 1. n e  dnc data consists of 20 nondcttcrs and 20 dctrnrA values; thertforr: d=2O and n 4  
in the above fmulas. 

S u p  2. 

step 3. 

Compurc the average Z' = 11.891 and the standard deviation so = 1.595 of the set of 
detected values. 

Use the formulas for Aitchison's adjammcnt to compute csthatcs of the me mean and 
staadarddeviarion: 

j = (1 - g) x 1 1891 = 5.95 

2 s  ( - a3i21)(1.595)' +(:)($)(11891)' = 37.495 &= 6.12 

2.2.3 More Tb8n 50% Noadetec!s 

If more than SO% but less thrn 90% of the samples p ~ t  nondcDcct or the assumpaom of 
Cohen's and Aitchison't metbob cannot k justified, p~lameaic s t d s i d  inremds should k 
abandoned in favor of non-parmetric altanatives (see Section 3 below). Nonpararncaic 
strtifticrf axe usy to COIUINC~ID~ apply to gnrund wuer &m measmtments, and no 
spuxalOOCJ#LlbbdbCukeato&adIcn~ 
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level) as 'hits' or ones; in the case of the Poisson, each panicle or molecule of contaminanon is 
counted scprvatcly but cumulatively, so that the counts for detected samples with high 
conantmiom ltrt larger than counts for samplu with small- ~0ncen&ons. As Gibbons (1987. 
p. 574) has noted it can be posarlated 

... that the number of molecules of a parricular compound out of a much larger 
number of molecuics of waur is the result of a Poisson process. For example, 
we might consi&r 12 ppb of bermne to represent a count of 12 units of benzene 
for every billion units examined In this context, Poisson's approach is jusrifcd 
in that the number of units (i.e.* molecules) is large, and the probability of the 
occmcna (i.e., a molecule being classified gs bemne) is smalL 

Far a detect with conanmuon of 50 ppb, the Poisson count would be 50. Counts for 
n o a d e m  can k taken as CQD or perhaps qual to half the detection h i t  (e.g.* if the deucrion 
limit were 10 ppb, the Poisson count for that sample would be 5). Unlike the Binomial (Test of 
Proportions) model, the Poisson modcl has the ability to utili= the maenttudes of detecud 
cmcenuarions in sraristicai rests. 

The Poisson dismbution is governed by the average rate of occumncc, h, which can be 
estimated by summing the Poisson counts of all samples in the b a c k p d  pool of data and 
dividing by the number of samples in the pool. Once the avcxagc rate of occurrence has been 
estimated the furmuia for the Paisson dimibution is given by 

e-if '  R(X = X) = - 
X! 

where x xqxcscntr the Poisson count and 1 msmts the average ratc of ocsumncc. To use the 
Poisson distribution to piredict coactnuanon values at downgmdxnt wells. formulas for 
c o a m u c e i n g ~ R t d c t u w  and ToierancC limits ac given Wow. . .  

2.2.4 Po- Prediction Limits 

To &mate 8 Rtdiction limit at a panicular well using the Poisson model, the approach 
-bed by Gibbons (1987b) and based on the wurk of Cox and HinLley (1974) can k used In 
this case, an upper b i t  exmared form inerval t hua  d p j l  ofkfutuxcrncasurunam of 
an analyoc with coIIfidcIlct level IU given n prtvious background xntastlltmcnts. 

To do this, la Tn reprrsccnt the sum of the Poiston couatt ofn background samples. The 
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Cox and Hinkley show, if Tn has a Poisson distribution with mean p and if no contaminadon has 
occuned, it is reuonabb to assme that Tk* will also have a Poisson disuibuaon but with mcan 
c& where c dcpendt on &e number of fume measurements being pmbcoed 

In particular, cox and Hinckky danonstrarc that the qllanIity 

EXAMPLE 10 

Use the following data frum six backgrouad wells toestimate M upper 99% Poisson 
Ru&cncmiimitfortkrraufaPmcmurunentsfromasingkdowngxadiemmll. . .  

Cmccnmmons @pb) 

Well 6 Mcxlril well 1 well2 W d 3  well4 well5 
1 <2 
2 4 e2 Q 15.0 Q Q 
3 4 4 Q d e c2 
4 Q IZO Q Q e Q 
5 d -  c2 Q 4 e 10.0 
6 4 4 Q 4 e. 3 



3 

SOLUTION 

sup 1. 

step 2. 

step 3. 

step 4. 

Pooling the background data ylelds n=36 samples, of which. 33 (92%) are nondctecr. 
Bccausc the rate of dttcmon is so infrequent (i.e., <lo%), a Poisson-based Rediction 
limit may be appiopnatt. Since four funat mearurrmcnu are to be predintd, k d ,  and 
hence, mWn= AB. 
Set tach nondcttct to half the dctecrion limit or 1 ppb. "ken compute the Poisson count 

70.0. To caiculatc an upper 99% Rediction limit, the upper 99th percentile of the t- 
distribution with (n-1)=35 degrees of fhtdom must be taken from a nfexence table, 
namely 135~p2.4377. 

Using Gibbons' farmula above, caltulatlc the upper Aedicdon limit as: 

of thc SUI of dl thc b a c l t p u d  ~amples, in this T~~33(1)+(12.0+15.~10.0) = 

= 15.3ppb (2.4377)' 2.4377 4 (2.4377)' 
4 

+- 70(1+9)+ 1 T; = $70) + 2(9) 9 

To test the upper Prediction limit, the Poisson count of the sll~p of the next four 
downgradient wells should be calculated If this sum is greater than 15.3 ppb, that is 
signrfrcant evidence of contamination at the downgracknt well. If no& me well may be 
regarded as c h  until rhc next testing pend 

The procedtac for generating Poisson prediction litnits is somewlaa~ flexible. The value k 
above, fur instance, need not -sent multiple samples from a Jingle well. It could also denote a 
collection of Single samples from k dininn wells, all of which arc assumeb to follow t&e same 
Poisson dismbution in the absence of ContaInination. The Poisson distribution also has the 
desirabie property that tk sum of s e d  poirron variables also has a Poisson distribution, even if 
the individual campomno are not ideatially distributed. Because of this, Gibbons (1987b) has 
suggesocd that if s e d  uulytcs (e.&. different VOCs) can all be modeled via the Poisson 
dirtribtttioa, the combined sum of d# Poisson counts of dl tbe aaalyoes will also have a Poisson 
disuibuuon, meaning that a single pndrcoon limit could be cs!jxnaed far the combined group of 
 anal^, thus ducing rhe number of natispical m. 
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paramtots meeting the above condinons, it should be possible to conrain the overall facility-wde 
false poriuve rase while sausfymg the Egulatwy requirements and assuring reliable idcnrificarion 
of pund-waicr conaunination if it occ1l~5. 

Though quanarauvt informarion on a suite of V m  may k automatically generared as a 
consequence of the analytical method configmarion (c.g., SW-846 method 8260 can provide 
quannt&rc results for approximauiy 60 differtnt compounds), it is usualiy u~cctssary to 
designate di of these compounds as i d c  d ~ o t c t i ~ n  indicatars. Such practic~ p a y  aggravates 
the problem of many comparisons and results in cievated false posiave rates for the facility as a 
whole. This rnakcs accume statistical =sting espccrally difficuit EPA k f m  recommends that 
the results of lcachau testing or the waste analysis plan m e  as the primary basis for designating 
rtliabic lcakdtrecrion indicatorpasameotrs. 

2.2.5 Poisson Tolerance Limits 

TO apply an upper Toicmct limit using the Poisson model to a group of downgradient 
wells. the appmch described by Gibbons (1987b) and based on the w& of 7ncLz (1970) can k 
taLm. Inthis~ifnocolltanimuhhasoccurrrdtht~in~upperiimitwillcontain 
a k g c  haion uf dl mcmmxws h n  h e  downgradient welff, ofm mcd at 93% or moxc. 

008084 
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percentage a of thc most extreme possible Xs, gvcn the values of n background samples, one can 
compuot an upper toicrancc limit With, say, 95% cowage and (1-a)% confidence. 

To d y  make there computations, k k s  (1970) shows that the most probable rate A can 
be calculated approximatrly as 

where as btfm Tn r ~ p ~ ~ n t t  the Poisson count of the sum of n background samples (setting 
nondcrects t~ half the method &o=ction limit), and 

xz[2T Y *  +2] 

represents the y yperctnde of the Chi-squazt distribution with mn+2) de-s of medom. 

To h d  the uppcr Tolaance limit witb p% ccwaagc (e.&, 95%) once aprobablc ratc k has 
bun estimated, one must compufc the Poisson percentile that is than 8% of all possible 
measuxcm- from that disuibutton, thst is, the 8% quanrile of the poirson dimibuuon with mean 
x a ~ ~  LTn, dthoocd by P~(BAT~) .  Using a well-known mathurratical rehaonship betwttn the 
Poisson and Chi-square dismbutions. finding the 8% quanrile of the Poisson amounts to 
dcttrminingthtleattposirivciruegcrksuch that 

2 [2k+2]22+ 
1-8 n 
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EXAMPLE 11 
L 

Use the benzene data of Example 10 to estimate an upper Poisson Tolerance limir with 95% 
coverage and 95% c o ~ n c c  probability. 

SOLUTION 

Sup 1. The benzene data consist of 33 nondeucts with detection limit equal to 2 ppb and 3 
de- values for a total of n=36. By setring each nondetect to half the detection limit 
as bcfm, one finds a c o d  Poisson count of the sum equal to Tp70.0. It is also known 
that the desired confidence probability is p.95 and the desued covcrage is b.95. 

Based on the observed Poisson count of the sum of background samples, s h a r e  the Step 2. 
probable occumna rate jl?n USing fOrmUIa above aS 

Step 3. Compute twice the probable o c m n c c  rate as n ~ n r 4 . 7 4 .  Now using a Chi-square 
rabk, find the smallest &gees of ffudom (df), k, such that 

&2k + 21 2 4.74 

Since the 5th percearile of the Chi-square distribution with 12 d f  equals 5 2 3  (but only 
4.57 with 11 df), it is seen that (2k+2)=12, leading KO k=5. Therefarc, the upper 
Poisscm Tolerance limit is cstimmdas k-5 ppb. 

Because the estimated upper Tolerance lirnit wirh 95% m g e  tquals 5 ppb, any 
detected value among downgdient samples parer  than S ppb may indicatr possible 
evidence of con-. 

Step 4. 
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3. NON-PARAMETRIC COMPARISON OF 
COMPLIANCE WELL DATA 

TO BACKGROUND 

When concentration data from several compliance wells arc to be compared with 
concentration data from background wells, one basic approach is analysis of variance (ANOVA). 
The ANOVA technique is used to test whether thm is stansacally significant evidence that the 
mean concentration of a constituent is higher in one or more of the compliance wells than the 
basttint provided by backgmuncl wells. Parameuk ANOVA methods makc two h y  assumpdons: 
1) that the data residuals arc Normally distributed and 2) that the p u p  variances are all 
appximatdy quai.  The sups for C a l c u U g  a par;rmemc ANOVA are given in the Interim Final 

(p~. 5-6 to 5-14). 

If either of the two assumptions crucial to a paramemc ANOVA is grossly viohcd, it is 
recommended that a non-parameuic test be conducted uting the ranks of the obsmarions rather 
than the original obsmations themselves. The Interim Final Guidance describes the Knrskal- 
Wallis test when three or mart well p u p s  (including back- dsa see pp. 5-14 to 5-20) l v l ~  

being compaxcd. However, the Kruskal-Wallis test is not meaable to two-gmup compaxisons, 
say of one compliance well to backgmddm. In this care, tht Wiicoxon Rank-Sum p r o d m  
(also known as the MMn-Whimey U Test) is recommended and explained below. Since most 
siruarions will involve the comparison of at least two downgradkt wells with background dam. 
theKwkal-Wallisccstisprrsenotdfintwithanadditionrlexample. 

3.1 KRUSKAL-WALLIS TEST 

When the assumptions used in a pammeuic analysis of varianct cannot be verified, e.g., 
when the origmal or uansfarmed residuals are not approximately Normal in distribution or have 
sigmficantiy dif€crcnt group varimccs, an analysis can be perfarmed using the ranks of the 
obscnmians. U d y ,  8 non-ptnmeuic pmcedurr wid be needed when a subsmatid haion of 
the measuremaus me below defection (mah than 15 perant), sincc then the above assumptions 
illt difiicult to Wzi@. 
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A non-parametric ANOVA can be used in any situation that the paramemc analysis of 
variance can k used. However, because the ranks of the data arc being used, the minimum 
sample s k s  for &e p u p s  must be a little largtr. A useful rule of thumb is to q u d e  a minimum 
of t h e  well p u p s  with at least four observations per group before using the Knrskal-Wallis 

Non-paxametric procedures typically need a few more observations than parametric 
pr#xdrrres for two reasons. On the one hand non-parametric tests make fcwcr assumptions 
concerning the dimibution of the data and so moxc data is ofen needed to makc the same judgment 
that would be rendered by a paramemc test. A h ,  pmcedms b d  on fanks have a dische 
distribution (unlike the continuous dismburions of paramemc tests). Consequently, a larger 
sample size is usually needed to produce test statistics that will be signrficant at a specified alpha 
level such 8s 5 V L  

The dative tfficrmcv of two pmccdmt is defined as the rad0 of the sample s h s  needed by 
each to achieve a cmain level of power against a specifiedaldvc hypott#sis. As sample s k s  

tenappmdw a limit that depends on the d y i n g  disuibuuai ofthe dara, but is always at least 
86 pereenr Thit means roughly that in the warst case, if86 measurements are available for a 

Wallis est. In many cases, the increare in sample size n v  to match the power of a 
pammeuic ANOVA is much smallcrornot &at a l l  Thtcffickncy o f &  Kruskal-Wallis tcst 
is 95 percent if the d a m a r e d y  Normal, and can k much largcrthan looperant in other lrcn 

get larger, the mckncy of tht KNskpI-waiiis testreiative to the parametric analysis ofvariancc 

ANOVA, Wly 100 srmple AUCS naded 00 ~UVC quivdently powerful Knrokal- 

(C.& it iS 150-t if* X C d d S  f& 8 diroibtlh d d  tbe b b k  CXpOndd) .  

3.1.1 Adjusting for Tied Observrtions 

000048 
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Background COmpIianct 
well 1 well2 well 3 Month 

4.2 5.2 9.4 
6.4 10.9 

14.5 
5.8 

11.2 11.3 
11.5 16.1 7 .O 
10.1 21.5 7.3 8.2 9.7 17.6 

1 
2 
3 
4 
S 
6 .  

SOLUTION 

S~CP 1. k n k  the N=18 oI&dom h 1 10 18 (SIMUCSC to largest) a~ in the fOIlOWhg table. 

Ranksofcappcr-dm 
Background Q=@a= 

Month well 1 well2 well 3 

1 2 8 
2 3 4 11 1 

15 12 
16 

13 
14 

3 

18 
4 5 

6 10 
17 

5 
6 1 9 

szq 2. compue the wilcaxon smisic by addinguptftecamplisncewellranlrs andsubnacting 
n(n+lYZ, so that W45-21164. 

step3. Compuocthtexpctcdvaluedsmnd8ddeviaoiondW. 

1 E(W) = 36 
2 
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S k p  5. Cornpare the observed 2-scan to the upper 0.01 pcmntilc of the Normal dismbution. 
Since &2.576>2.326=~.01, there is significant evidence of contamination at the 
compliance well at the 1 percent siignificanct level. 

3.2.1 Handling Ties in the Wilcaxon Test 

Ti observations in the wilcoxon test 8rc handled in dmilar fashin to the KruSLal-Wallis 
proccdm. First, midranks arc computed for all tied values. Then the w k o x o n  statistic is 
computed as befolt but with a slight di&rcncc. TO form the appmXimapt Zscort, an adjustment 
is made to the fanufa for the standltTd deviation of W in ard# to account for the groups of tied 
vaiucs. Thc ntccssary fanula (2Ctrmann. 1975) is: 

where, as in the Kruskal-Wallis method, g equals the number of groups of distinct tied 
obsavations and ti IcprcscnB the number of tied values in the ith group. 

40 



4. STATISTICAL INTERVALS: CONFIDENCE, 
TOLERANCE, AND PREDICTION 

Thrte types of statistical intervals are ofun consauctcd from data: Confidence inmval~, 

Toiaan~e inwvals, and M c t i o n  intervals. Though ofun confused, the interpeaations and uscs 
of these i ,mcds  axe quite distinct. The most common inmval encountQtd in a course on statisfics 
is a ConMence inttrval for S O ~ C  paramew of the disaibutim (t.g., the population mean). The 
inmd is corsmctd from sample data and is &us a m&m quantity. 'Ibis means that CBCfi sct of 
sample data will generate a different Confidence interval, even though the algorithm for 
consmrcting the inwval stays the same CVQY time. 

A confidtna interval is designed to contain the specified pgpufntian paramem (usuaily the 
mean concentmion of a well in ground-water monitoring) with a designated level of CoLlfidCncc ur 
probabiliry,dcnotedas ]-a Thtinttrvalwillfailtoindudcthetnrcparameocrin~~attlya 
percent of the cases what  such intervals ~ r t  conslxucud. 

Tht usual Confidence inotnral for the mean gives infanation about tk average conctnmior~ 
level at a particular well of group of wells. It offers little inforrnarioa about the highest or most 
exarcme sample conccntmions one is likely to observe over time. Often. it is thost cxuune values 
one wants to monitor to be protective of human health and the environment. As such, a 
confidtnct intarval g e d y  should be used only in two situaams far gmmd-wa~?data analysis: 
(1) when directly specified by the parnit or (2) in compliance monitoring, when dowqnuhcnt 
samples arc being compartd to a Ground-Water Prottction Standard (GWPS) rcpmcnting the 
average of onsite backpuuddata, as is sometimes the casewitbaa Alacnrrroe Ccmmrninanthvcl 
(ACL) . In other SiarariOnS it is usually &si!abk to employ a T o w  or PrediEtian imaval. 



m u 2 8 1 9 3  
4 : - 72$4 

Tolerance intervals arc very useful for ground-water data analysis, because in many 
situations one wants to ensure that at most a small fraction of the compliance well sample 
mm-at s  exceed a specific concentration level (chosen to be protective of human health and 
&e =-at). Since a Tolaance inmval is designed to cover all but a mall percentage of the 
population mcasuIIcmcnts, obsavations should VQY mly excetd the uppcr Toleranct limit when 
outing small sample sizes. The uppa Tolaance limit allows one to gauge whether or not too many 
cxnuaeconantratironmeasurerncntsarcbcingsampkdfromcoatplian#pointwells. 

~ 0 - e  intends cau be used in detection monitoring when c0m-g compliance data to 
background values. They also should be used in compliance monitoring when comparing 

approach is mxmrrrendedforcomparison with aMaxixnum Contaminant Level (MU) or wirh an 
compliance data to CQtBin ~und-warcrhpection standarb. specifically, the tokmce inuxvd 

A U  if the A U  is &id M hdth-bUd risk data. 
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the logarithms of the Ori@ data befort conspucting the random inmals. If the data follow the 
L o g a d  model, then tht intervals should be consuucttd using the logarithms of the sample 
values. In this care, the limits afthcscinm- tD the oligrnal Camplian# 
data ar GWPS. Rather, the comparison should involve thc mlaPPcd 
-. When neither the Normal arhgnannal models can be j- a non-parametic version 
o f &  interval may be utili&. 

4 .1  TOLERANCE INTERVALS 

Ln & d o n  monitoling, the compliance p h t  Samples ~llt assumed to come from the same 
distribution as the background values und significant evidcnct of contamination can be shown. 
To test this hypothesis, a 95 percent covemgc Tolerance htcrval can be constructed on the 
background data The background data should first be tened to check the dismbutional 
asJpmptions. Oncetheinwvaliscormuadc8ch-pm sampkisccmpaxdtothc upper 
Tolerance limit If any compliance point sample cxotcds tbe limit, the well from which it was 
drawn is judged to have significant evidence of contamination (note that when testing a large 
number of samples, the namn of a Tolersncc in& practically cnsuxcs that a few measurements 
will k above the uppnTolaancc iimir. even when no amtanination has OCCUrZCd In there cases, 
the offending wells should probably k maxnpled in order to vaifywhcthcrarnas draE is dcfiniet 
evidtact of con-) 

Tr.L- Lp-1- - . u u s  &U.Y& b!i !!la beur C o m d  using the logged backgrod dat% the Compliance 
point samples should fint k logged befaze comparing with the upper Toimnce limit The steps 
for computing the actual Tolmnccinoaval in &mion  monitoring arrcdctailedin I& in- Final 
Guidance on pp. 5-20 to 5-24. One point about the table of factors K used to adjust the width of 
the Toluance interval is that these factors art designed to provide -995% coverage ofthe 
popularicm Applied over many data sets, the llvefaee coverage of these intervals will often be 
C~O# to 98% o m m  (m Gutrman, 1970). TO co~uollct a 
with covaagc of (I-B)%, the K mdaplier can k computed dircctIy with the aid of a 
S t u d e n t s t ~ k r t i a r a b l c  ~ ~ c a r c , t h t f o n n u h b e c o m e s  

u p ~ a  Tolerrnct inf#wl 

51 
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In compliance monitoring, the Tolaan# interval is caicubd on the compliance point data 

that the uppcr one-sided Tolerance limit may be compared to the appropriate Ground-Water 
htccriun Smn&d (ie., MCL or ACL). If the upper Tolcranct iimit txctcds the fixed smndd, 
d especially if the Tolerance limit has been ammctcd to have an coverage of 95% as 
& b b d  above, there is significant evidence that as much as 5 percent or mart of all the 
~ p i i a n c c  well measurements will excccd the limit and consequently that the complianct point 
=lis arc in violation of the facility permit The algorithm far computing Tolerance limits in 
compliance monitoring is given on pp. 6 1  1 to 615 ofthe Interim Final Guidance. 

EXAMPLE 14 

chyscne Concentration @pb) 
Month well 1 well2 well3 well4 well5 

1 19.7 102 68.0 26.8 47.0 
2 39.2 7.2 48.9 17.7 30.5 
3 
4 

7.8 
12.8 

16.1 
5.7 

30.1 
38.1 

31.9 
222 

15.0 
23.4 

Mmn 19.88 9.80 4628 24.65 28.98 
SD 13.78 4.60 16.40 6.10 13.58 

SOLUTION 

stcp 1. 

008054 
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Logged Qvystne Concentration (log@pb)J 
well 1 well 2 well 3 well 4 well 5 Month 

2.98 2.32 4.22 3.29 3 .a5 
3.89 2.87 3.42 1 

3.46 2.7 1 3.40 2 
4 2.55 1.74 3.64 3.10 3.15 3 

1.97 
2.78 

3.67 
2.05 

2.20 3.79 3.18 3.28 
0.68 0.45 0.25 0.48 2.8 1 

0.35 
Mean 
SD 

Welt Skewness ISkwnesA 
1 210 210 
2 .334 .334 
3 .192 .192 
4 -.145 .145 
S -.020 .020 

Step 4. The tolerance facooa for a omsided Normal tolerance in& with an 
c o ~ W i l h 9 5 ' 1 6 ~ b a b i i i t y a n d n r 4 ~  * isgivenby 

of 95% 

we0 1 281+2631(0.68)= 4.61 log(ppb> 
W d 2  2.20+2631(0.45)= 3.38 bg@pb) 
Wd3 3.79+263UO.35)1 4.71 log@pb) 
wen4 3.18+2631(025)= 3.85 log@pb) 

well 5 3.28+2631 (OM)= 4% log@pb) 
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Step 5. Cornpiwe the  UP^ tolerance h i t  for each well to the logarithm of the ACL, that is 
log(80W.38. Since the upper tolcm~ce h i t s  for wells 1.3, and 5 exceed the logged 
ACL of 4.38 bg@pb), thcrt is evidence of chrystne contamination in wells 1.3, and 5. 

4.1.1 Non-parametric Tolerance Intervals 

When the assumptions of Normality and Logn~nnality cannot be justifiaa especially when a 
significant +on of the samples an nondecect, the use of non-parame& toltranct inrtrvals 
should be COMdtItd "be uppcr Toluance limit h a non-pmncuic sc!Iing is usually chosen as 
an 0.der staxistic of the sample data (see Gumnan, 1970). commonly the maximum value or maybe 
the second largest value observed. As a consquencc. non-parametric intervals should be 
consuuctcd only Srom wcils thru arc not coneaminated. Bccawt the maximum sample value is 
often taken as the upper Tolerance limit, ncm-paramcmc Tolerance intervals are v c ~ y  easy to 
consuuct and use. The sample daur must be ordcd,  but no ranks need be assigned to the 
concentration values other than to detumine the largest meanrremenrs. This also means that 
nondctccts do not have to be uniquely oldaedorhaadledin my specad manner. 

One advantage musing themaximum copccnuaticm instcadof assigningranLs to the data is 
thatnon-panunemc intends (including T o l m a ~ ~  inmvals) ah sensitive 00 the actual maHardes 
of the concentration data. Another plus is that unless all the sample data arc nondttcct. the 
maximm value will be a ~ c o n c c n m u i o n .  leading ma well-defined upperTolaance iimit 
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Table A-6 in Appendix A prwides tt# ~0-p levels with 95% confidtna for 
various choices of n, using either the maximum sample value or the second measurement as 
tfrc tolaanct h i t .  As an example, with 16 background measurements, the minimum coverage is 
w3% if the maximum back+ value i s & s i p a l d a ~  the uppaTolaancc h i t  and b74% if 
the Tolerance limit is taken to k tht sccond kpst b- value. In gcnual, Table A-6 

wth 
COV-. Parametric tolerance intervals do not requirC as many background 

. .  . 
i l l - t h a t h  

= p b  pitciStIy because the form of the &lying Mbutiosr  is assumed to be known. 

Because the coverage of the above non-parametric Tolerance intervals follows a Beta 
dismbuaon, it can a h  be shown that the as ditcussed above) level of 
coverage is equal to l-(m/(n+l)] (see Gumnan, 1970). In particuh, when the maximum sample 
value is chosen as the uppcrtolmncc limir rn-1, andbc-is q u a l  to &+I). 
This implies that ai least 19 background samples a ~ t  ueccssary to achieve 95% covaage on 
averagt. 

(not the 

EXAMPLE 15 

d 
d 

7.5 
i 5  
4 
4 
6.4 
6.0 

9.2 d 
d 5.4 
d 6.7 
6.1 <j 
8.0 d 6.2 d 
5.9 d 4 d 
d d 7.8 5.6 
d <5 10.4 d 

088059 
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SOLUTION 

step 1. Examine the background data in Wells 1,2, and 3 to detmnine that the maximum 
observed value is 9.2 ppb. Set the 95% confidence uppcr Tolerance iimit equal to this 
value. Bcllaunr. 24 backgmund samples arc available, Table A-6 indicates that 
minimum covuage is equal to 88% (the CXpecDed average covcxageI however, is equal t~ 
24/23=%6). To increase the coverage lev& rnm backpound samples would haw to 
be c- 
Compare tach sample in c m p w  Wells 4 and 5 IO tht uppaT01cranct h i ~  Since 
none of the mcasurcrnents at Well 5 is above 9.2 ppb, while one sampk from Well 4 is 
a b  -limit, conclude thatthert is significant evidence of cappacontamination at 
Well 4 but not Well 5. 

Step 2. 

4.2 PREDICIlON INTERVALS 

When comparing background dam 00 compliance paint samplesI a prediction intend can k 
consuuctal on the background values. If the diraibutions of background and camplianct point 
data arc really the same, all the compliance point samples should be contained below the upper 
Rediction in& h i t .  Evidcruxof contamidon is idiascdifoncormorcof thtcompbce  
tampks lies above tbe uppaprrdiction limit 

With i n a a d  corn-* aPndiction intend can be camppredonpastda!atocoaeain a 
specified number of future obs#vatians from the same well,-prwideb the we11 has not been 
prwiously cantaminad. If any one or mare of the fum samples falls above the upper Redictian 
limit, there is evidence of xecent contamination at the well. The soeps to dculatc parametric 
piediction intavals sirma GZS s. 5-24 '3 5-28 Of drc h a  Final GuiAan~~. 

EXAMPLE 16 

b&glOtdWellDaur QIlpliEUXXWCllDaPI 
W c m r m m i o  n ~ C O M t r r w r i  on 

SamphgIhk (ppb) SmnplingDae @pb) 

48.0 
30.3 

Month1 - 12.6 Month4 
30.8 

4225 
15.0 

52.0 
28.1 

Month2 33.3 
44.0 n-4 
3.0 Maum33.95 
12.8 -14.64 

000058 
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Monb 3 58.1 
12.6 
17.6 
25.3 

n=l2 
Mean=27.52 

SDi17.10 

Month 5 47.6 
3.8 
2.6 
51.9 

nr4 
Meant26.48 
SD=26.94 

SOLUTION 

Step 1. Firsttestthtbackgrounddatafar-Ndty. Onlyttre-ddatam 

Step 2. A Probability Plot of the 12 backgrolmd values is given below. Tht plot indicaccs an 
overall patfun that is reasonably linear with some modest dep8rturcs from Normality. 
To funher test the assumption of Nomaiity, run the Shapiro-Wilk test on the 
backgrounddata 

includtdsinccthesc values an UsedooconsouctthePredictioninotiML 

PROBABlLITY PLOT 

t r  1 
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i XO X(n-i+l) &i+l bi 

1 3.0 58.1 0.S48 30.167 
2 12.6 52.0 0.333 13.101 
3 12.6 44.0 0.235 7.370 
4 12.8 33.3 0.159 3.251 

17.6 30.8 0.092 1217 
0.085 

5 ,  
25.3 28.1 0.030 

b55.191 
6 
7 28.1 25.3 
8 30.8 17.6 
9 33.3 12.8 

10 44.0 12.6 
11 52.0 12.6 
12 58.1 3.0 

Step 4. Sum the components bj in column 5 to get quantity b. Comput~ the stmid deviation 
of the background knoem values. Then the ShqnmWillrstariSric is given (IS 

Step 5. The critical value at the 5% level fbr the Sewilk test on 12 observations is 0.859. 
Since the calculated due of W-0.947 is well above the critical value, there is no 
evidencetortjecttheassumptionofNunndity. 
Compute the Rediction interval using the original backgmund data The mean and 
stanriarrl deviaaon of the 12 background samples axe given by 2752 ppb and 17.10 
ppb, rtspeCtively. 

Since thtlt axe twofiarrt months of compliance dam to k campared tothe Rediction 
bif, the number of futm sampling periods is k-2. At each sampling paiod a mean of 
fourrndependent samples will beaxupumi, som4in theprebcaon inmvalfarmula 

and 11 df is equivalent to the usual t-staristic at the .975 level with 11 df, is., 

Step 6. 

Step 7. 

(s# Interim Final Guidan#, p. 5-25). The Bod- EStBtiStiC, +1129sp with ks2 

t,,c91p2.201. 

Iimit(UL)usingttrefonnula. . .  Step& CompPattkupperonedArAPibdlCQOII 

. .  

UL = m 2 +  (17.1OX2u)l -+- = 49.25ppb. 4z 
soep9. Compare the UL to the Complirnce Qta ne means of the four carrrpliance well 

0- ' for manrhz 4 d 5 me 33.95 ppb d 26.48 ppb, xcspmivdy. Since the 



mean conccnuations for months 4 and 5 axe below h e  upper Rcdicrion limit, that is no 
tvidaret of recent contamindon a~ the monitoring facility. 

4.2.1 Non-parametric Prediction Intervals 

Whcn the parameaic a s ~ ~ p t i o n ~  of a N o d - b a s e d  Ruiicrion limit CMXIOI be justifkd, 

often &e to the presence of a sigaificant fraction of noadetects, a non-paranretric prediction 
innval may be considered instead. A non-parametric upper hdiction limit is typically 
consmctcd in the same way as a non-pparameoic upper Tolaaa~e limit, that is, by estimating the 
limit to be the miurimm value of the SCI ofbackground samples. 

The difference between non-parametric Tolerance and Prediction limits is one of 
interpretation ad probability. Given n background meastntments and a desircd conf%hcc level, 
a non-pmmcuic Toltranct intaval will ha= acmain 00- 7 ~ .  With hi@ probability, 
the Totcrancc interval is designed to miss only a small percentage of the samples from 
Qwngradicnt wells. A prtdiction limit, on the other hand indvcs the addcacc prohabitity that 

sense, the Atdiction hait  may be thought of as a 1009b c o v ~ a s t  Tolaance MI far the next k 
the M X t  future sample or samples will dcfinircly fall below the upper Rediction limir In this 

fizmrr srwplet. 
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EXAMPLE 17 

Use the following arsenic data from a monitoring facility to compute a non-pparameoic upper 
predicrim limit that will contain the next 2 monthly measuremeno from a downgradient WCU and 
&~thtkvelofcoaMenaesssocurred ' witfithePicdi&limit 

- 
Arsenic Co- @pb) 

Background Wells camp- 
Motrth well 1 well2 well 3 Well 4 

1 4 7 4 
2 c5 6.5 c5 
3 8 4 10.5 
4 d 6 4 
5 9 12 4 8 
6 10 4 9 14 

SOLUTION 

step I. 

step 2 

step 3. 

4.3 CONFIDENCE INTERVALS 
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MCL Since M M a  
would not be pxuectivc of human health or the environment 

M g n c d  10 set an uppcr bound on the acceptable contamination. this 

when cornparing individual compiiaa# wells u) an A U  derived from average background 
levels, a lower one-sided 99 pacent Confidence limit should be consn~cttd If the lower 
canfideaet limit exceedsthe ACL, bcx~is s i m e v i d e m x  thattheaut lllcMcmcam&mat 

the compliance well exceeds the GWPS and that the facility permit has been Violated Again, in 
most casts, a Lagnormal model will approXim~ the dara better than a Nahmal dhibution mobel. 
It  is therefore recommended that the initial data checking and analysis be paformed on the 
logarithms of the data. Ifa Confidcncc inmal is constructed using logged conccnuation data, the 
lo- confidmce limit should be compared to the logarithm of the ACL rathn than the ori@ 
GWPS. Steps for computing Confidence intervals arc given 0n.p~. 6-3 to 6 1  1 of tht Intaim 
Final Guidance. 

61 
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5. STRATEGIES FOR MULTXPLE COMPARISONS 

5.1 BACKGROUND OF PROBLEM 

Multiple comparisonS ocun whenever mcm than one statistical rest is pcrfcxmed &g any 
givcnmonitoxing orevaluation period. Thuec~mparison~ can& a s a d t  of the n& t~ 
muhple downgradient wells against a pool of upgradient background data ur to test several 
indicator parameten for contarnination on a regular basis. Usually tht same sta t is t id  test is 
performed in every comparison, each test having a fixed level of confidence (loa), and a 
corrrspondirg false positive rate, a 

The false positive raoc (or Type I-) foran individual compalison is the probability that 

has occumd If ground-water data measurements wue always constant in the absence of 
conuuniuaaan, false posirivts would never #XIIT. But ~&wao~rmeasuremtno typically my, 
either duc to natural variation in the levels of backmud co-tdons or to variation in lab 
mursurtment and analysis. 

the otst will falsely indicape contsmination* k* that tht ttst will "oigger," though I#) COlltamirrntiOn 

Applying the same test to each comparhon is acceptable if tht number of comp8rbons is 
small, but when the numkr of comparisons is modaate to large the faSe pOSitive nue asmckud 
with the testing new& as a whole (that is, across all comparkms involving a separaoe smzistical 
tm) cm 3e quite high. This means that if enough tests arenm, time will be a s ign iha t  chance 
that at ltsst one test will indkatc conmminarion,evcn if no amd contaminaoion has occuirtd As 
an example, if the testing network consists of 20 separate comparisons (some combination of 

inexVal limit is multiple wells and/orindicaoorparamepcn) a n d a m  confidtllct kvcl Rabctmn 
used on each corn-, one would expect an overall aerwork-wide false positive raot of over 
1846, even though the Type I c110l for any single comparison is oply 1%. Thio means h a c  is 
ncarfy 1 -in 5 that one mmQe camparisons will fdsciy~tgiscrpomd coatamination evm 
ifnont has ocamui. With 100 comparisons and the same testing pl#xdurt, the o d  network- 
wide false p c s i t i v ~ r a ~ e  jumps to moxe than 63% adding additional expense to vcrify the lack of 
COllaRminarinn ufdsdy  uiggexc43Wells. 

. .  

62 008064 
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on the hydrogeology of drc Si=, some i n d i m  panunem may need to be d oaly at onc (or a 
few adjacent) rtgulattd waste units, as opposed to testing BCIOSS the en- facility, as long as the 
permit spcdies a cOmmOn poirrt of compiianoc, thus further limiting ttrt number of total staolrtical 
c m ~ o I 1 s  nectsq.  

1. Is the network-wide false positive rate (across 111 constituents and wells being 
esred) a#xptably low? and 

2. D # s t h t t u t i n g ~ g r h a v e ~ s t a r i s r i # l ~ o o d n r r r l t a l ~  
whtnitoccun? 

63 O(20065 
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mnltc the demonsuation that the ~taplstically signifrcant difference was caused by an arm in 
sampiing, analySb. ar statistical evaluahh mesting @mes that have been approved by the 
kgional Adminijwtor can be written into the facility permit, pmvidtd their statistical power is 
mparablc to the EPA Rcfemcc Power Curve given below. 

F a  large monitoring networks, it is almost impossible to maintain a low nctwork-wide 
o d  positive raoc if the Type I crrois for individual cQmparisoIIs must be kept above 1%. 
AS will be seen, somc alrcmuivc testing snare@ can achieve a low ncmmk-wide falsc positive 
rate while maiataining adequate power to detect contanlhh. EPA thuefcxe rtcoauncnds hat 
insLcluiofrhe 1% nimion folindividual ax!np8nsans, the'- - - falsepositiverate 
(across all wells and constituents) of any alternative testing strategy should be kept to 
approximately 5% for each maniuxing or evaluation ptrrod while mainmining stathid power 
cmparable to the proccdrat below. 

The other goal of any testing snategy should be to maintain adequa!~ statistical power for 
dctccring contamhation. Technically, powa refers to the probability that a statistical testing 
procedtpt will rcginn and identify evidence of contamination when it exists. However* power is 
typically &fined with tespect to a single comparison, not a network of cumpaxisons. Since some 
t m i n g p c e d u m  may identify caneaminarionmollcrtadily whm d wells in thc network mc 
amfaminatcd as oppo3edto justahe arnvo, it is suggested that dl testing strategies be campad 
on the fdloeng marc stringent, but cummon, basis. k t  the m v e  of a testing 
prcradurt b c d e f i n c d u t h e ~ t y a b d e ~ g c a n g m ~ ~ i n t h e m o n i t D l i n g ~ w h t n  
~ W e l l i s a J a ~  withasingleconstin#nt Naoetbatthee&ctivtpowaisa 
CoIUQvative mranm of howa acningrcgimcn will perfoam averthe mwork. because the test 
must ~fl~cover one con- well among many clean OMS (Le., like "finding a d e  in a 
w=m. 
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Perhaps the best way to describe the power function associated with a particular testing 
procdne is via 8 p p h ,  such as the example below of the power of a standard Normal-bascd 
uppcr Rediction limit with 99% confidence. The power in perant is plotted along the y-axis 
against the standardized mean level of contamination along the x-axis. The srandardhd 
contamination levels arc in units of standard deviations above the baseline (cstimated’from 
background data), allowing different p o w  CWVCS to bc Compared a c r ~ ~ ~  indicaun paramem, *. and so fonh. The s- units,& may be computcdas 

(Mean Contaminntian Level)- (Mean Background Levci) 
(SD of Background Data) 

A =  

In some sinuuions, the probability that conramhion will be detected by a particular ocshg 
pmadant may be difficult if not impossible to dcrive analytically and will have to be sirnulatrA on 
a computer. In these cases, the powa is typically estimated by gmuating N o r m a l l y a b u d  
random valuts at ciif€crca~mcankvelS andrcpeaoedly Simulndng the testprocedurt. Wd~nough 
xepetitions a nliablc am be plotred (e.&, see fip below). 

EPA REFERENCE POWER CURVE 
(16 Backgmmd Samples) 
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Notice that the power at rqxesents the false positive rate of the mt, becausc at that point 
no contaminarim is actually present and the curve is indicating how oftcn contaminatinn will be 
“desectcd” anyway. As long as the power at A=O is approximately 5% (except for tests on an 
individual constituent at an individual well w h m  the false positive rare should approximate 1%) 
and the rest of the power c w e  is acceptably high, the testing mtegy should be adequately 
comparablt roEPA standarbs. 

To deeennine an acceptable power curve f O r C O m p 8 r h 1  to dtcm&W Ee&g s w e ~ g i t s ,  the 
following EPA Reference Power Curve is suggest&. For a given and fued number of 
b8ckptmd measurements, and based on Nannallydktributed data from a single downgra&nt 
well generated at various mean levels above background, the EPA Rcfaence Power Curve will 
rcpmcnt the power associated with a 99% confidence upper prediction Limit on the next single 
fume sample from the wcll (set figure above for 1146). 

Since the power of a test depends on s e d  f m ,  including the back- sample s h ,  
the type of test, andthe number of comparisons, a d i f k n t  EPA Rehence PowerctPVewill be 
llssocjaptd with each distinct number of background samples. Power curves of alternative tests 
should only be compared to the EPA Reference Power Curve using a comparable number of 
background measurements. If the power of the alternative test is at least as high as the EPA 
reftrence, while maintaining an approximate 5% overall false positive mu, the alternative 
pn#dmt should be acccptablc. 

Withrespecttopowercmves, keepinmind three imponant cxmdemions: 1)thtpownof 
any =sting mahod am be hacased macly by relaxing the €dscposirivcraotrr;qrJirtment, letting a 
became largtrrban 5%. This is why an rrppxixna~ 5% alpha kvel is suggcstedas the sranAard 

- guidance, to ensure fair power comparisons among competing rests and to limit the overall 
network-widc false positive rate. 2) The simulation of alternative testing methods should 
incmpmc evuy aspect of the procedure, from initial screens of the data to final decisions 
axlcunhg thc pluence ofccmnunination. This is tspecially applicable to ~ g k S  that involve 
stme foam ofIcmsting atpotmtially contaminated wells. 3) When the oeoting suatcgyinaxpam 
multiph:comparisons,itk~thatthtpowcrbcgaugadbysimalatingconeaminstionmaneand 

arb. EPArtcoznmends tbatpowa be dcfinedcunsumively, f d g  any testprocdme to find 
only 01# indicauxparamcmatasingk well (Le.. by measuring the- . Asnoted 

“ t h c n r r A k . i n t h e h a ~ ”  

66 
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5.2 POSSIBLE STRATEGIES 

5 . 2.1 Parametric and Non-parametric ANOVA 

AS &scribed in the In& Find Guidance, ANOVA proccdurcs (either the paramepic 
method the Knrskal-Wallis test) allow multiple downgnubent wells (but not multiple 
constituents) to be combined into a single statiStid teest, thus enabling the network-wide false 
posiuvt fatt for any single constituent to be kept at 5% regardless of the sizt ofthe n e e  The 
ANOVA method alsa maintainS decent power for &&g zed C ~ t 8 ! l l ~ 1 l ,  thougb only for 
small to moderately-sized networks. In large networks, even the parametric ANOVA has a 
difficult time hnding the "netdle in a bystack." TIE reason far this is that the ANOVA ~ - t t s t  

comblncs all downgxadicnt Wells simultantously, so that "clean" Wells axe mixed togetherwith the 
single contaminated well, potentially masking the test's ability to detect the source of 

Brmlrar!OftheStC- * ' ,thtANOVApiocedtrrtmay&vcpoorcrpowafaadeeCting 
a MXTOW plume of contamination which affects only one or two web in a much larga network 
(say 20 or marc camparisons). Another drawback is that a signifkant ANOVA test d t  will not 
indicate which well or wells is potentially contaminated without further post-hoc testing. 
Frathermolt, the power of the ANOVA procedrrn depends signifiamtly on having at least 3 to 4 
samples per well available for testing. Since the samples must be statistically independent. 
cokaion of 3 u r m m  samples at a given well may necessitate a d - m o s d l  waitjlriiie d 
ground-water velocity at that well is low. In this case, it may bc tempting to look for ather 
srnutgits (e.g., Toluancc or Rdicaion inmmls) that allow sratistical testing of each new gropnd 
water sample as it is Enllrrrnd and anaiyzal. Finally, since the simple --way ANOVA pmxdmc 
o u t l i m l i n t b e I n t a i m F i n a l G l l i l r a n a c i r n o t ~ ~ o o o e s t m u l t i p l e ~ t s s i m P l t a n e o u s l y ,  
the ovaall fabe positivcrae will be a p p x h u c l y  5% m l l e a d i n g t o a p o o w t i a l l y  high 

overall nenmk-widc f k k  positive ratrc (aaoss wells and constituents) if many constitutnts need 
tokesoed 

5.2.2 Retesting with Panmetric Intervals 

6i QOQ069 
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in a large network would be expected to fail the Tolerance limit even in the absence of 
contaminadon, each well that triggers the Tolerance limit is resampled and only those constituents 
that "oiggatd" the limit Blt Via ~ t l  uppa PrCdictiOn limit (a& diffaing by constituent). 
Ifom or marc ~sampks fails tht wprtdict ion limit. the specific constituent at that w d  failing 
tht test is to have a concentration level significantly greater than background. The 0VQau 
s u m =  is effective for large neworb of corn*- kg.,  100 or more comparisons), but also 
flexible enough to aEcornmodatt ~ m a l l e r n U w d S .  

To wip and implement an apEnopTiaot pairdTolaance and prediction inoervais, one must 
Lnow~nrrmbcrofbackgrrrundsamplesavaitableandthtnmnbcrofcomp~inthenetworlt 
Sinct paraxncuic i n d   it used, it is assmuithat t)tt background data arc eitbcr N d  or can 
be OBllSfarmcd to an approximate Normal dismbuaon. The mcky parr is to choose an average 
coverage for the Tolerance interval and confidcnct level for the Rediction interval such that the 
twin goals (VI: met of kecplng the overall false positive raoc to approximately 5% and maintaining 
adcquaoestatisticalpwcr. 

I 

totala=R{A,orA, or... olAior... ~aA,}=l-nR{x~) 
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total a = 1 -[x +(1- x). y p  

- V284 

As noted by Gutman (19701, the probability that any randOm sample will fall below the 
upper Tolerance limit (Le.* quantity x above) is qual to the expected or average coverage of the 
Toitrance interval. If the Tolerance interval has been constructed to have average coverage of 
9S%, xd.95. Then given a pndetermintd value for x, a fixed number of comparisons m, and a 
dtsirtd OVtIBu false positive raft a, we can solve fa tht Conditional probability y as fallows: 

V l T - x  
1-x Y' 

If the conditional probability y wo1: equal to the probability that the rtsample(s) fur tht ith 
constituent-well combination falls below the upper Prediction limit, OM could fix a at, say, 5% 
and construct the PItdiCcion intcrval to have confidcncf level y. In that way, one could guarantee 
an expected network-wide falsc positive ratc of 5%. Unfomnately, whethcr or not one or more 
resamples falls below the Prtdicrion limit depends panly on whether the initial sample for that 
comparison eclipsed the Tolerance limit This is because the same background data arc used to 
consum both the Tolerance limit andtfie Rdiaion Iimit creating astatiseicaldependenct betmm 
tht usts. 

The exact rtlarionship between the conditional probability y and the unconditional probability 
Pr(YjspL) is not known; however, simulations of the resting strategy suggest that w k n  ihc 
confidence level for the Rediction in& is equated to the above solution far y, the overall 
network-widc false positive r a ~  unns out to be highcr than 5%. How much higher depends an the 
number of background samples and also the number of downgradient comparisons. Even with a 
choice of y that guarantees an expected facility-wide false positive rate of 5%. the pow 

of the d t i n g  tcEting maocgy src not necessarily equivalent to the EPA Refertnce C- 

Power Curve, again depending on the number of background samples and the number of 
moniuxingwtil#mstirumtcambinatiansinthcnttwarlt. 

. .  



Tolerancc limits for smaller networks and higher coverage Toieranct h i t s  for larger newurks. 
That way (as can be seen in the table), the muldng Rediction limit confidence levels will be low 
enough m allow the consmaion of prediction limits with dcccnt starisrid pwu. 

PARAMETRICREESTINGSTRATEGES 

COMPARISONS SAMPLES COVERAQ(%) m RATING 
# # BG mLE€uNcE PREDICTION 

** 
** 
* 
** 
** 
.* 
** 

8 95 90 
16 95 90 

5 16 95 85 
24 95 85 

9s 90 
8 95 98 

24 

20 16 95 97 

16 98 97 ** 
24 95 97 

16 99 92 
50 24 98 95 

24 99 90 
16 

100 24 99 95 
24 98 98 

* 
** 
** 

98 98 * 

No=: ** = strongly recclmmended 
*=-ended 

Only smegies that approximately met the selection aimia zue listed in the table. It can be 
seen that some, but not all, of these strategies a r t ~ r e c a m m e n d e d  Those that axe maely 
"ruxrmnrcnded" failed in the simulations tofullymect one or both ofthe selection aimia The 
pcxfcxmancc of dl tfre recommended suategics, however, should be adequare to ccmctly identify 
ccum&mionwhilem~gamodestfaeility-widtfalse~avcraae. 

m 000072 



Several examples of simulated power curves arc presented in Appendix B. The range of 
&wngradicnt wells tcstcd is 5 to 100 (note that thc number of wells could actually Ircprcscnt 
the number of Eonstiment-well combinations if testing multiple parameters), and each c u m  is 
based on eitbcr 8,16, or 24 background samples. The y-axis of each graph measures the efftctivt 
power of the otsting strategy, Le., the probability that contarnination is detected when 

constirucnt at a single well has a mean concentration higher than background level. For & 
case, the EPA Reference Power CUIVC is c o m p d  to two diffennt two-pha# testing spaetgics. In 
tk first case, wells that triggerthe initid Tolcrapcehit axcxcsarnpld~na. This single resample 
is cum- to a Rtdictioa limit forthe next fuplrt sample. in the second-, web that trigger 
tbe Tolerance limit axe resampled twice. Both z c ~ 8 ~ 1 p l e ~  ltrc cozLIJ#IIcd toan uppcrRtdiction limit 
forthe nextlJyQfuame sa!xtples at thruwell. 

The simulated power c u ~ t s  suggest two points. First, with an apppiatc choice of 
coverage and pllebction levels, the t w o - p h ~ ~  E d g  ~ t e g i e s  have coarparable power to the 
EPA Refenncc Power Curve, while maintaining low Ovciau netwcxk-wide false pWitive rare. 
Second, the power of the retesting strategy is slightly improved by the addition of a second 
zcsamp€cstudlsthatfailtheinitinl To~limitkcarrsetbesampksite is incmsai 

5.2.3 Rctutiag with Noa-parametric Intervals 
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In order to meet the twin goals of maintaining adequate statistical power and a low overall 
of m e  posiavts, a non-parame& sera~tgy must involve some level of reresting at thost wells 

whichinitially~posiblccontamination. RctcstingcanbcaoEomptisharlbytakingaspccific 
nmbcrofadditidindcbcndtnt samples from each well in which a specific constituent uiggcrs 

j&ial test and then comparing thtse samples against the non-parameuic prc&ction limit for that 

P==-- 

Because more independent data is added fo the overall testing ~ ' O ~ U T G  retesting of 
additional samples, in general, enables one to make molt powerful and mare accurate 

demminations of possible contamhion. Repwtiag docs, however, involve a trade&. B m  
the power of the test i n w s  with the number of resamples, one must decide how quickly 
reSampits QLn b e c o w  tofllstrrt 1)qrrick~~auionMbcoafirmatton - ofcan taminntion and 

that the pcrfmancc of a non-paramtaic retesting strategy depends substantially on the 
yet2)thcstatisticallndependence O f S U C C & V C ~ @ C S h n M y ~ &  hnOtm 

lnQcpmdena of riledata from each weu 
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xnaximum and one of the -pies is also above the pndtcnon limit, the well can still be classified 
as "clean" if the other rtsample is below the prcdxcaon limit. Statistical power simrllarinns (sft 
Appendix B), howtva, suggest that this spategy will perform adequately under a number of 
rnonimring  OS. Still, EPA ~ t c o g n k ~  duu amcsting strategy which might d a d y  a well as 
"clean" when the initid sample Bpd a rre~ampk both fd the uppa RtdiCtion h i t  could offer 
problematicimplidowsfaaptnnitwriwanddctmcnfpasonntl. 

A moxe stringent approach was suggested by Gibbons in 1991. in that article (1991b). 
Gibbons #rmputes, 8s "passing b~bavh~' '  the pwty that- Of m SlMplCs take0 froln 
each of k wells pass the upperpndictron &it Undcr this definition, if thc initial sample fails the 
uppcrprrdiction limit, all (m-1) rtsampb must pass the limit in order for well t~ be ciassifiolras 
"clean" during that testing period. Chsapaltly, if any single ruample falls above ttre backg~~und 
maximum, that well is judgcdas showing simcant eviderux of contaminstion. 

in both of his papers, Gibbotis of€m mbks that can be used tocompute tbe overall network- 
wide false positive m e  givca rhc number of background samples, the number of downgradmt 
comparisom, md the number of- foreach coxnpriscn~ It is clear thru there is less fkibjliv 
m adjusting ancm-pararnuric as opposed to apmmuric pxcdiam limit toachieve acatainTypc I 
urorratt. 31 h. if only a certain number oframs arc feasible at any given well (e.&, in 
mmaintainlhdependwre ofsucmsive samples), tht only ncoune to maintain alow falsc positive 
ratt is to collect a larger number of background samples. In this way, the inability to make 
parametric assumpQons about the data illuspaces why nmprrramczric rests arc on the whoie less 
* t s n d l e s ~ t hanthdrp8ranl&coun~ 
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Curve, Normally distributed data were simulated for several combinations of numbcrs of 
background sampks and downgradrent wells (again. if multiple constituents arc being tested, the 
number of wells in the simulations may be regarded as the number of constituent-well 
corrtbinations). Up fo three xS8XllplCS ahwed b the Simulations for C0mp-V~ pupom. 
EpA-, however, that be fC&bk h @ tOCOllCClOdy OllC arwOlndcptndent 
m p l e s  from any given weu P o w  m s  lqYrc=ting the results of these Simal&ths 
g i e n  in Appendix B. For each scenario, the EPA Refcrrcnct Power C w e  is compared with the 
simulated powcxs of six diffuent testing stratcgits. Thut strategies include colltction of no 
resamples, one rcsamplc, two resanpks UndQ Gibbons' 1990 approach (designated as A on the 
cunrcs) and his 1991 approach (labelled as B), thne resamples (under appmack A and B). 
Under the one resample saxtcgy, a potentially contaminated compliance well is designated as 
"ckan" i f t k  =pk piuses thcxucst and "eanraminaml" otbwhe 

000046 
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NON-PARAMETRIC RETESTING STRATEGIES 
# ## BG 

WEUS SAMPLES STR4TEGY REFERENCE RATING 

** 
** 
** 
** 
* 
* 

8. 

8 1 Rtsample 

16 1 Rtsample 
5 8 2 Resamples (A) Gibbons, 1990 

16 2 Resamples (B) Gibbons, 1991 
24 2 ReslrmPlts (B) Gibbons, 1991 

2 R c s a m p ~  (A) Gibbons, 1W.l 

20 16 2 Reramph (A) Gibbons, 1990 

24 2 Resamplts (B) Gibbons, 1991 

8 
16 1 Rtsample 

24 1 Resample 
* 

8. 

** 
32 lRCSaUl$C 

Gibbons, 1991 
2Resam 

32 2 RtSamPles (B) 
16 DkS (A) Gibbons, 1990 - -  . -  

* 
** 
I* 

* 

50 2 lReamj?le 
24 2 Resamples (A) Gibbons, 1990 
32 1 Resample 

Gibbons, 1990 
24 2 Resamples (A) Gibbons, 1990 
32 1 Resample 

2Rtsam 100 16 pits (A) 

No=: * * = ~ g o o d p c r f ~ c c  re good^^ 

6. OTHERTOPICS 

6.1 CONTROL CHART§ 

Control Charts arc an alternative to Prediction limits far performing either iwawdl 
comparisons or compaxisons to historically monitored background d s  during detection 

tfiismaixxiisonlyapprapMoeforini~yancorrtamimedcoarpiiabccwells. Themnindvaaw 
of a coatrol ChmavaaRdiction limit is d w a  Control Chan allows data from awell to be 
viewed graphically overtime. Trcnds a d  changes in &e conctnaation levels can be sccn easily, 
bccansc all sample data is constcutivdy plotted on the chart as i t  is collected, giving the data 
analyst an -.ovaview of tht pattern of coneaminltian. Ruiiccion limits allow only point- 
in-time camparisons benmetr the most r#lxnt data and past infarmation, making long-eerm U d S  

difficPltmiAcmifv. 

mcntitorbg. Since the basdine parameters fora Conml Chart arecaimad fromhimrricaldata 
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concenaation leveis is due to spatial andlor hydrogeological diffutnces between the wells rather 
than contamination at the facility. Because intraweil comparisons involve but a single well, 
sigdicant changes in the level of conramhion cannot be attributed to spatial diffennces between 

w&, r c ~ e s s  of whetha the method used is a prediction limit OT Control  char^ 

Of come, past obscwarions can be used as basehe data in an htrawd Compkon only if 
the well is known to be uncontaminated. O t h c m ~ ~  * , the comparison between baseline data and 
newly cokcted samples may negate the goal in detection monitoring of identifying evidence of 
contamination. Furrhcrmorc, without SpeCraiiEed modification, Control charts do not efficiently 
handle truncated data sets (i.e., those with a significant fraction of nondetects), making than 
appropriate only for those constituents with a high frequency of occumnce in monitoring d s .  
Conml charrs und to be most useful, thuzforc, for inorganic paiamems (e.&, some metals and 
~~icalmonitoringparameoers)thatoccurnaawllyinthegroundwaocr. 

The sups to ctmsuuct a conarol Chart can be f d  on pp. 7-3 to 7-10 of the Interim Final 
Guidance. The way a control chcrrr works is as follows. Initial SBmplt data is colltcted (frcrm the 
specific compliance weU in an hmwcll comparison or from baclrground wtlls in m p a r i ~ ~ ~ ~  of 
compliance data with background) in order to establish baseline parameters far the chart, 
sptclfrcally, estimates ofthe weII mean and well variance. These samples arc meant t0chmcm-k 
the concentration levels of the uncontaminated well, befort the onset of detection monitoring. 
Since the estimate of well variance is parricularly impormnt, it i s  recommended that at least 8 
samples be c o l l e c t t d  (say, over a ycais time) IO mimate the baselint parameo#s. Note that none 
of these 8 ormcarc samples is acruallypiomedon thechah 
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ofcwoo l  situation is bdicatd on the Control Chart when either the standardized means or 
CUSUMs cmss one of two prtdctcrmincd threshold values. These thrrsholds a ~ t  based on the 
ratioaale that if the well mains uncontaxhwd. new sample values standardized by the dgml 

basdimparametas s h o u l d n o t & v h r e s u b s t 8 n ~ y ~  the b a s c k l e v e L  Ifcontamhbn does 
occur* the old baseline parameters will no longer Wc~rarely represent concentmion levels at the 
well and, hence, the stan- values should S i @ d y  dcviarrC fnnn !he basClint levels on the 
Conad chah 

In the combined Shewhartcumulatk sum (CUSUM) Control Chart lecammended by thc 
Interim Final Guidance (Section 7). the chart is dcdared out-of-conool in one of two ways. First, 
the S m  ' means (Zi) computal at each sampling period may m s s  the Shewhart conool 
limit (SCL). Such achaagtsigniftts ampiclinertare in well concentration levels among thcmost 
hccllt  sample data seconf& the crrmulative sum (CUSUM) of the !im&aKil& meaasmay 
become too largt, crossing the "decision i n d  value" (h). Crossing the h h h o l d  can mean 
either a sudden rise in concentration levels or a gradual increase over a longer span of b e .  A 
grsdual inchase or o t n d  is particularly indicated if the CUSUM crosses its thrwhold but the 
s a d a d k d  mean Z, does not. Thertason forthis is drat several oo1wtcutivc small incstases in& 
will not uiggcr the SCL thnshold, but may mgga the CUSUM threshold. As such, the Confro1 
Chsrtcan indicate the onset ofeithcrsuddcn or gradual amtamidon at thcamphace point 

As with other ScBtiSeical methods, con001 Charts me based on Ctrrain assumpuons about the 
sample data The first is that the data at an UllcOntamjnaEcd well (ic.. a well process that is "in 
conml") arc Normally disaibuted Since estimates of the baseline parameters arc ma& using 
initialiy collect& dam, these data should be ttstcd for Normality using one of the goodncss-f-fit 
!&mqm.a desaibcdwriicr. Betar yet, the logaxitixns ofthe dam should k rwttdfim, to scc ifa 
Lagnaamalmodtlis appmprh forthe conanaarioadata. If& LopomaI mo&l is notrcjtcocd 
tht CmmI C b t  shouldbe cmsmctd salely on the basis of loggad data 
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The final assumption is that the baseline parameters at the well reflect current background 
concentration levels. Some long-term fluctuation in background levels may be possible even 
though contamhation has not occrartd at a given well. Because of this possibility, if a m l  
Chart xunains "in conml" for a long period of time, the baseline panrnretas should be updtucd to 
include mmc recent obmtions as background data. After all- the original baseline parameters 
will o b  be based only on the first y d s  data. Much better esthatcs of the me background 
mtan and a can be obtained by including m m  data at a later time. 

To 01th backgmnd data with m ~ l t  xcccnt sample% atwo-sampk t-test can be run to 
compare the oldcrconcenwtion levels with the concen@Ons of the proposed update samples. If 
the t-test docs not show a Significant di&rence atthc s paceat sigr&ance l e ~ p r o a e d t o r t -  

eStimaae the basdine parameters byihcludingmanercccat data If the t-testdm show a si-t 
-, the Ilewerdamshatlldnot be characrcnzed * as background unless some specificfactar 
can be pinpainredexplaining why background levels on thc sire haw naMallycbaugcd. 

EXAMPLE 18 

-a conuol chmfartht 8 months of data co- below. 

p 2 7  ppb 
am25 ppb 

15.3 
41.1 
175 
15.7 
372 
25.1 
19.9 
99.3 

22.6 
27.8 
18.1 
31.5 
32.4 
325 
27.5 
64.2 

SOLUTION 
Step 1. "he ttnree paranreten ntcessary to consum a combined Shewhm-CUSUM chart arc 

StepZ List the sampling periods and monthly meant, as in the following table. 

br5, bl, and sad45 in rmits ofnlwlard dmiapioa (SD). 
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19.0 
34.5 
17.8 
23.6 
34.8 
28.8 
23.7 
8 1.8 

-0.45 
0.42 

-0.52 
-0.19 
0.44 
0.10 

-0.19 
3.10 

- 1.45 
-0.58 
-1.52 
-1.19 
-0.56 
-0.90 
-1.19 
2.10 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
2.10 

S1 = rnax (0, -1.45 + 0 )  = 0.00 

S2 = max (0, -0.58 + 0) = 0.00 

S3 = rnax (0, -152 + 0 )  = 0.00 

s4 = max (0. -1.19 + 0 )  = 0.00 

S5 = max (0, -056 + 0 )  = 0.00 

Sg = max (0. -0.90 + 0 )  = 0.00 

S7 = rnax (0. -1.19 + 0) = 0.00 

sg - max (0. 2.10 + 0 )  - 210 

Step 4. Plot the conaol chart as given Mow. The combined chart indicates rhat that is no 
evidence o f~a~ramimia  at tht monihng facility because neither the stdadkd 
mean nor the CUSUM statistic utcccdj the Shewhan conuol limits for the months 
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CONTROL CHART FOR NICKEL DATA 
MU.2- S I O w A i U r r ,  

3 c 

-2 -lf=z 10 cum 
0 2 4 6 8 

In the above Control Chan, the CUSUMs arc cornpad to threshold h, while the 

6.2 OVTLIERTESIZNG 

Folmal &g foroutlb should be done only if an obsmmon --Ywmv 
oodcrs of magnitude) compared to tht rut ofthe data set Ifa sauapk value is suspect, one should 
ran dre outliertest describedonpp. 8-11 to 8-14 ofthe EPA guidance docament It should be 
cautioned, however, that this outlier test assumes that the zest of tht data values, utccpt for the 
suspect obscnmion, aze N d y  dhibnted (Barnen and Lewis, 1978). Since Logwrmally 
disuibutcd mcIulllrcmcnts often am& me ormoxe values that appear high rehive to tkxcst, it is 
rtcommended thu the outlier test be run on the logarithms ofthe dam instead ofthe oxiginal 
0- . That way, one can avoidchdjring a high Lognormal mcasuruncnt as an outlier 
just because e test k p t i o a s  wwe v i o ~  
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ermrs in uanscripnon of the dara values. Once a spccxfic muon is Qcumentcd, the sample should 
excluded from any funher staristical analysis. If a plausible reason cannot be found, the sampie 

should be uead  as a vue but cxneme valut, ppf D be excluded from funher analysis. 

EXAMPLE 19 

The table below confabs data fnnn five wells mfliSUfCd over a 4-month puiod. The value 
7066 is found in the second month at well 3. Determine whether thert is statistical evidence that 
this observarion is an outlier. 

Carbon Teuachloride ConcenPation @pb) 
wcll 1 well 2 wen 3 well 4 Well 5 

1.69 302 16.2 199 275 
3.25 35.1 7066 41.6 6.5 - 
7.3 15.6 350 75.4 59.7 

12.1 13.7 70.14 57.9 68.4 

SOLUTION 

Step 1. Take logarithms of each observation. "hen order and list the log@ c~nceatmbn~. 
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step 2. 

stcp 3. 

step 4. 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

1.69 
3.25 
6.5 
1.3 
12.1 .- m 
13.1 
15.6 
16.2 
35.1 
a -  - 
41.b _- 
57.9 
59.7 
68.4 
1 1 .  
7u. 1 -- 
75.4 
199 n5 
-02 

7066 

0.525 
1.179 
1.872 
1.988 
2.493 
2.617 
2.141 
2.785 
3.558 
3.728 
4.059 
4.089 
4.225 
4.250 
4.323 
5.293 
5.617 
5.710 
5.818 
8.863 

Calculate the mean and SD of all the logged measurements. In this cast, the mean and 
SD arc 3.789 and 1.916, rtspecdvcly. 

calculspttfrtauttierteststatisdcT~aS 

Compazc the observed T a  with the ai- value of 2557 for a sample size 
n=u) d a  sigdkance level of 5 pcrcent (taken from Table 8 on p. B-12 ofthe Inraim 
F d  m). S i n a  the value Tp2648  d tht aitical value, thac is 
sionificanl~thutkhrgcstobservarionisasracitticaloulia. Bcfoxcwcluding 
this due froa! d y s i s ,  a valid expltrnation far this unusually high value should 
be found. Otherwise, treat the outlier as an exucmt but valid coI1ccnnation 

6 .. 
. ... .. , . . 
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TABLE A i l .  

COEFFICIENTS {AN.I+~}  FOR W TEST OF 
NORMALITY, FOR N=2(1)50 

i; 3 

1 
2 
3 
1 
5 

ilo 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

ilo 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

i i  
12 
13 
14 
15  

i ln 
1 
2 
3 
4 
5 

6 
7 

9 
10 

a 

2 
0.7071 - 
- 
0 

11 
05601 
33 IS 
22a 
.I429 
.ob95 

0- - - - - 
2 1  

0.4643 
3185 
2578 
21 I9 
.1736 

0.1399 
.lo92 
.os04 
m30 
.W 

0.0000 
0 - 
- 
3 1  

0.4230 
m1 
3 7 5  
2145 
.1874 

0.164 1 
.1433 
. l a3  
.lW 
m99 

3 
0.7071 .oooo - - - 

12 
0.5475 
3325 
2347 
.1586 
-0922 

0.0303 - - - - 
22 

0.4590 
3156 
2571 
3131 
.I764 

0.1443 
.1150 
.m 
.0618 
.0368 

0.0122 - - - - 
32 

0.4188 
3898 
2 4 5 3  
2141 
-1878 

0.1651 
.I449 
.I265 
.lo93 
.0931 

4 
0.6872 
.I677 - - - 
13 

03359 
.3325 
a 12 
.1707 
.lo99 

0.0539 
.oooo 
0 - - 
23 

0.4542 
.3126 
2563 
2139 
.I787 

0.1m 
.I201 
.W41 
.06% 
.04s 

0.0228 
.oooo - - 
0 

33 
0.41% 
3%76 
2451 
2137 
.1880 

0.1660 
-1463 
.I284 
-1118 
.Ow1 

5 
0.6646 
2413 
.oooo - - 
14 

0.5251 
3318 
a 6 0  
.1802 
. m o  

0.0727 
-0ZAq - - - 
24 

0.4493 
3 9 8  
2554 
2145 
.1807 

0.1512 
. I N  .m 
.mi4 
.0539 

0.0321 
,0107 - 
0 - 
34 

0.4127 
3854 
a 3 9  
2132 
.I882 

0.1667 
.1475 
.I301 
.1140 
.0988 

6 
0.6431 
a06 
.m5 - - 
IS 

05150 
3306 
2495 
-1878 
.I353 

0.0880 
a 3 3  
.oooo - - 
25 

O M S O  
3069 
2!i43 
2148 
.1822 

0.m9 
.I283 
.lo46 
.os23 
f i10  

0.0403 
moo 
.oooo - - 
35 

0.40% 
2834 
2427 
2127 
.I883 

0.1673 
.I487 
.1317 
.1160 
.IOU 

7 
0.6233 

.303 1 

. l a 1  

.m - 
16 

0.5056 
3290 
2521 
.I939 
.1447 

0.1oOs 
. m 3  
.01% 
0 

0 

26 
0.4401 

3043 
2533 
215 1 
.I836 

0.1563 
.I316 
.I089 
.0876 
.0672 

0.W76 
.a284 
.oow - - 
3 1  

0.4068 
2813 
2415 
2121 
.1883 

0.1678 
.14% 
.1331 
.I 179 
.lo36 

8 
0.6052 
-3164 
.1743 
.OS61 - 
17 

0.4968 
3273 
2m 
.1988 
.IS24 

0.1 109 
.m 
.03s .oooo - 
27 

0.4346 
3018 
z 2 2  
2152 
.I848 

0.m4 
.I346 

.09p 
m2a 

0.0540 
.03S 
.0178 
.oooo 

.I im 

- 
37 

0.4040 
2794 
3ao3 
21 16 
.I883 

0.1683 
.IS03 
A344 
.I 1% 
.lo% 

9 
0.5888 

.3244 

.I976 

.ow7 

.oooo 
18 

0.4886 
.3253 
2553 
2027 
.1587 

0.1197 
.m7 
.04% 
.0163 - 
28 

0.4328 
m2 
2510 
2351 
.I857 

0.1601 
.1372 
,1162 
.096J 
.On8 

0.0598 
.Ma 
. a 3  
.0084 - 
3a 

0.4015 
2774 
2391 
21 10 
.1881 

0.1686 
.1513 
.I356 
.I21 I 
.lo75 

10 
05739 
3291 
2141 
.la 
.0399 

19 
0.4808 
3232 
2561 
2059 
.I641 

0.1271 .am 
.MI2 
.0303 
.oooo 
29 

0.4291 
2968 
a99 
2150 
.I864 

0.1616 
.I395 
.I 192 
.loo12 
.oszz 

0.0650 
.W83 
.03m 
.0159 
.oooo 
39 

03989 
2755 
2380 
3104 
.1880 

0.1609 

.I366 
J22S 
.lo92 

.ism 

20 
0.4734 
-321 1 
2565 
2tm5 
.1686 

0.1334 
.1013 
m11 
.0422 
,0140 

30  
0.4254 

2944 
2487 
2148 
.1870 

0.1630 
.1415 
.1219 
.1036 
.a52 

0.0697 
.057 
.038 1 
.a227 
.0w6 

40 
03%4 
2737 
2368 
.2#8 
.1878 

a1691 
.1526 
.1376 
.1237 
.I 108 

A4 088087 



TABLE A i l .  (CONTINUED) 
' , -  L 2'284 

COEFFICIENTS {AN.I+~) FOR W TEST OF 
NORMALITY, FOR N=2(1)50 

~ 

iln 
11 
12 
13 
I4 
15 

16  
17 
18 
19 
20 

i ln 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
1s 

16 
17 
18 
19 
20 

2 1  
22 
23 
24 
2s 

3 1  
0.0739 
. o m  
.W3S 
.02%9 
. o w  

OMKK) 
0 

0 

0 - 
4 1  

03940 
2719 
2357 
2091 
.1876 

0.1693 
.1531 
.I384 
.I249 
,1123 

0.1m 
.m1 .om 
.(#TI 
&!75 

ON76 
AI379 
.m83 
.or88 

0.0000 - - - - 

32 
0.0777 
.0629 
.0485 
. O M  
.02M 

0.0068 - - - - 
42 

03917 
2701 
2345 
-5 
.1874 

0.1694 
.Is35 
.I392 
. l a9  
.lD6 

0.lOu) 
.m 
.om 
.0101 .om 

0.0506 
a11 
.0318 
.om 
4136 

0.0045 - - - - 

3 3  
0.0812 
.w 
.os30 
.039S 
.a262 

0.0131 
Am0 - - - 
43 

03894 
2684 
2334 
2078 
.I871 

0.1695 
.1S9 
.1398 . I269 
.I 149 

0.1035 .m 
.om 
m 
.os28 

0.0534 
. w 2  
ms2 
.a63 
Bo175 

OB087 
.oooo 
0 - - 

3 4  
0.0844 
.07M 
.0572 
.MI  
.0314 

0.0 187 
.w62 - - - 
44 

0.3872 
2667 
2323 
2072 
.1868 

0.1695 
.I542 
.I405 
,1278 
.1160 

0.1049 
.ow3 
.ow2 
.OW 
.=I 

0.0560 
M I  
8383 
.02% 
m11 

0.0126 
.m2 - - - 

35  
0.0873 

.0739 

.0610 

.0484 

.0361 

om39 
.0119 
.oooo - - 
45 

03850 
2651 
23 13 
206s 
.1865 

0.1693 

,1410 
.12M 

0.1062 
.ws9 
.mO 
.(I775 
.0673 

OMS4 
m97 
.MI2 
.ma 
.Mas 

OB163 
M)%1 
.oooo 

.ins 

.iim 

0 - 

36 
0.O900 
.0770 
.WS 
.OS23 
.w 

0.0287 
.0172 .m - 
0 

46 
0.3830 
2635 
2302 
2058 
.la2 

0.1695 
.I548 
.1415 
.1W3 
.I180 

0.1073 .m 
.0816 
.m 
.obw 

O m  
.m22 
m39 
.0357 m 

OB197 
.0118 
. a 9  - - 

37 
0.0924 
.0798 
,0677 
.OS9 
.OM4 

0.033 1 
.m 
.0110 
.oooo 

47 
03808 
,2620 
2291 

.1859 

0.1695 
.us 
.1420 
.1m 
.1189 

0.1m .mu 
.ma 
.0801 
4713 

0- 
4546 .ow .mu 
-0307 

011229 
4153 
40'76 
.oooo 

- 

ms2 

- 

38 
0.0947 
.0824 
.07M 
.OS92 
.048 I 

0.0372 
.M64 
.0158 
.m53 
0 

48 
03789 

3604 
2281 
3045 
.lW 

0.1693 
.1u1 
.1423 
. I S  
.I197 

0.1ms 
,0998 
.0906 
.ON7 
.U731 

0.0648 
. o s  
3489 
a 1 1  
m35 

0.0259 
A I ~  
.0111 
.om7 
0 

39 
0.0967 
.0848 
.0733 
.a22 
.os 15 

O.tMO!l 
.0303 
.0203 
.0101 
.oooo 
49 

03770 
z8!3 
3271 
3038 
.1851 

0.1692 
.1553 
.1427 
.I312 
.I205 

0.1 103 
.lo10 
.m19 
.a32 .ma 

04667 
.os88 
m11 
.W36 
.0361 

0.0288 
.a15 
.0143 
.oQ11 
&wo 

40 
0.0986 
.WO 
.0x9 
.MI 
.0546 

0.0444 
.0m3 
.w 
. O M  
.0049 

50 
0375 I 
2574 
22m 
2032 
.1841 

0.1691 
.1554 
.1430 
.1317 
.1212 

0.1113 
.IOU) 
.0932 
.0546 
.0f64 

04685 
J a 8  
.0532 
.0459 
.mu 

0.03 14 
.ous 
.0f74 
m04 
a035 



TABLE A-2. 

PERCENTAGE POINTS OF THE W TEST FOR N=3(1)50 

n 0.01 0.05 

0.753 0.767 
.687 .748 

.762 
3 
4 s .686 

6 
7 
8 
9 
10 

11 
12 
13 
14 
IS 

16 
17 
18 
19 
20 

2 1  
22 
23 
24 
25 

26 
27 
28 
29 
30 

3 1  
32 
33 
34 
35 

0.713 
.730 
.749 
.764 
.781 

0.792 
.805 
.8 14 
.825 
.835 

0.844 
.85 1 
.858 
.863 
.868 

0.873 
378 
A81 
.884 
A88 

0.891 

.896 

.898 

.900 

.a94 

0.902 
.904 
.906 
-908 
.910 

0.788 
.803 
,818 
A29 
342 

0.850 
.859 
366 
.874 
-883 

0.887 
.892 
.897 
.901 
.g05 

0.908 
.911 
.914 
.916 
.918 

0.920 
.923 
.924 
.926 
-927 

0.929 
.930 
.93 1 
.933 
-934 

0138089 
A-3 



d- 

TABLE A-2. (CONTINUED) 

PERCENTAGE POINTS OF THE W TEST FOR N=3(1)50 

n 0.01 0.05 

36 
37 
38 
3 9  
4 0  

4 1  
4 2  
43  
44 
4 5  

46 
47  
48  
4 9  
50  

0.912 
.914 
.916 
-917 
.919 

0.920 
.922 
.923 
.924 
.926 

0.927 
-928 
.929 
.929 
.930 

0.935 
.936 
.938 
.939 
.940 

0.94 1 
.942 
.943 
.944 
.945 

0.945 
346 
.947 
.947 
,947 

M .  



TABLE A-3. 

PERCENTAGE POINTS OF THE W' TEST FOR N235 
7284 

n .o 1 .05 

35 
50 
5 1  
53 
55 
57 
59 

6 1  
63 
65 
67 
69 

7 1  
73 
75 
77 
79 

8 1  
83 
85 
87 
89 

9 1  
93 
95 
97 
99 

0.919 
.935 

0.935 
.938 
.940 
.944 
-945 

0.947 
347 
.948 
.950 
.95 1 

0.953 
.956 
.956 
.957 
.957 

0.958 
.960 
.96 1 
.961 
.96 1 

0.962 
.963 
.965 
.965 
.967 

0.943 
.953 

0.954 
.957 
.958 
.961 
.962 

0.963 
.964 
.965 
.966 
.966 

0.967 
.968 
.969 
.969 
.970 

0.970 
.97 1 
.972 
.972 
.972 

0.973 
.973 
.974 
.975 
.976 



TABLE A-4. 

A 

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT 
CORRELETION COEFFICIENT FOR N=3( 1)50(5)100 

.o 1 .025 .05 n 

3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

2s 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 

- 39 
40 

.869 
A22 
.822 
.835 
A47 
A59 
.868 
A76 

383 
389 
.895 
.go1 
.907 
.9 12 
.912 
-919 
.923 
.925 

.928 

.930 

.933 

.936 

.937 

.939 

.941 
,943 
.945 
.947 

.948 
,949 
.950 
.95 1 
.952 
.953 
.955 
.956 
.957 
.958 

.872 

.a45 
3 5 5  
.868 
376 
A86 
.893 
.900 

.906 

.912 

.917 

.92 1 

.925 

.928 

.93 1 

.934 

.937 
-939 

.942 
,944 
.947 
.949 
.950 
.952 
.953 
,955 
.956 
.957 

.95 8 

.959 

.960 

.960 

.961 

.962 

.962 

.964 

.965 

.966 

.879 

.868 
,879 
.890 
A99 
.905 
.912 
.917 

.922 

.926 

.93 1 

.934 
-937 
.940 
.942 
-945 
.947 
.950 

.952 

.954 

.955 
-957 
.958 
.959 
.960 
.962 
.962 
.964 

,965 
.966 
,967 
.967 
.968 
.968 
.969 
.970 
.97 1 
.972 



TABLE A-4. (CONTINUED) 

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT 
CORRELETION COEFFICIENT FOR N=3( 1)50(5)100 

.o 1 .025 .05 n 

.967 .973 
.973 -967 
.973 .967 
.974 -968 
-974 .969 
.974 .969 
.975 .970 
.975 .970 
.977 .97 1 
.978 .972 

.958 41 

.959 42 

.959 43 

.960 44 

.96 1 45 

.962 46 

.963 47 

.963 48 

.964 49 
50 .965 

55 
60 
65 
70 
75 
80 
8!i 
90 
95 
100 

-967 
.970 
,972 
.974 
.975 
.976 
.977 
.978 
.979 
.981 

-974 
- .976 
,977 
.97 8 
.979 
,980 
.98 1 
.982 
.983 
.984 

.980 

.98 1 

.982 

.983 

.984 

.985 

.985 

.985 

.986 
,987 



Y 
.o 1 
.05 
.lo 
.15 
.20 
.25 
.30 
.35 
.40 
.45 

.so 

.55 

.60 

.65 

.70 

.75 .so 

.85 

.90 
-95 

1 .oo 
1 .05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 

1 s o  
1.55 
1.60 
1.65 
1.70 
1.75 
1.80 
1.85 
1.90 
1.95 

TABLE A-5. 

VALUES OF LAMBDA FOR COHEN'S METHOD * A 

Percentage of Non-detects 

.01 .05 . l o  .15 .20 .2S -30 .35 .40 .4s .so 
.0102 .OS30 .1111 .I747 .2443 .3205 .4043 
.0105 .0547 .1143 .I793 2503 .3279 .4130 
.0110 .0566 .1180 .1848 2574 .3366 .4233 
.0113 .OS84 .1215 .1898 2640 .3448 .4330 
.0116 .OW .1247 .1946 2703 3 2 5  A 2 2  
.0120 .0615 ,1277 .1991 2763 .3599 .4510 
.0122 .0630 .1306 .2034 2819 .3670 .4595 
.0125 .OM3 .1333 .2075 .2874 .3738 .4676 
.Or28 .0657 .1360 .2114 2926 .3803 .4755 
.0130 .0669 .1385 .2152 .2976 .3866 .4831 

.Or33 .0681 .I409 

.0135 .0693 .1432 

.0137 .0704 .I455 

.0140 .0715 .1477 

.0142 .0726 .1499 

.0144 .0736 .1520 

.0146 .0747 .1540 

.0148 .0756 .1560 

.0150 .0766 .1579 

.OH2 .On5 .1598 

.2188 
2224 
2258 
2291 
.2323 
.2355 
.2386 
.2416 
.2445 
.2474 

.3025 
,3073 
.3118 
.3 163 
,3206 
.3249 
.3290 
-333 1 
.3370 
3 0 9  

.OH3 . o m  

.0157 

.0159 

.0160 
,0162 
,0164 
,0165 
,0167 
,0168 

.0785 

.0794 

.0803 

.os1 1 

.0820 

.0828 

.0836 

.OM5 

.OM3 

.0860 

.1617 3 0 2  -3447 

.1635 2530 3 8 4  

.1653 2551 .3521 

.1671 2584 .3557 
,1688 -2610 .3592 
.l705 -2636 -3627 
.1722 .2661 .3661 
.I738 .2686 .3695 
.1754 2710 .3728 
.1770 2735 .3761 

,0170 .0868 .1786 .2758 .3793 
,0171 .On6 .1801 2782 3825 
,0173 .0883 .1817 2805 .3856 
,0174 .OS91 .1832 2828 -388'1 
,0176 .0898 -1846 3851 -3918 

,0179 .0913 .1876 2895 .3978 
,0180 .0920 ,1890 -2917 .4007 
,0181 .09n .1904 3938 .a36 
,0183 .0933 .1918 2960 

. o m  .om -1861 2873 .3948 

.3928 .4904 

.3987 .4976 
,4045 5046 
.4101 5114 
.4156 5180 
.4209 5245 
.4261 5308 
.4312 5370 
.4362 5430 
4 1 1  5490 

.4459 
-4506 
.4553 
.4598 
.4643 
.4687 
,4730 
-4773 
.4815 
.4856 

.489l 

.4938 

.497l 
3017 
5055 
5094 
5 132 
5169 
,5206 
5243 

5548 
5605 
5662 
57 17 
577 1 
5825 
5878 
$930 
598 1 
.603 1 

.608 1 

.6130 

.6179 

.6227 

.a74 

.6321 

.6367 
A413 
.6458 
.6502 

.4967 
SO66 
S184 
S296 
S403 
3 0 6  
s604 
S699 
S791 
3 8 0  

S967 
.6051 
.6133 
A213 
A291 
.6367 
. W 1  
.65 15 
.6586 
.6656 

.67Z 

.6793 

.6860 

.6925 

.6990 

.7053 

.7115 

.7177 

.7238 

.7298 

,7357 
.7415 
.7472 
.7529 
.7585 
.7641 
.7696 

.7804 

.7857 

. m o  

.6927 

.7029 

.7 129 

.7225 

.7320 

.7412 

.7502 

.7590 

.7676 

.7761 

.7844 

.7925 

.so05 
3084 
,8161 
A237 
A312 
.8385 
.8458 
3529 
.8600 
A670 

3738 
.S806 
A873 
3939 
.9005 
.9069 
.9133 
.9196 
.92s9 
.9321 

S989 ,7128 
.6101 .7252 
.6234 .7400 
.6361 .7542 
A483 .7678 
.6600 .7810 
,6713 .7937 
.6821 . A060 

A179 
A295 

.8408 

.85 17 
A625 
A729 
A832 
3932 
.903 1 
.9127 
-9222 
.9314 

,9406 
9496 
.95M 
.967 1 
.9756 
.984 1 
9924 

1 .oO06 
1.0087 
1.0166 

1.0245 
1.0323 
1 .o400 
1.0476 
1 . ~ 9 1  
1.0625 
1.0698 
1.0771 
1.0842 
1.0913 

3403 
.8540 
3703 
.8860 
-9012 
.9158 
.9300 
-9437 
,9570 
.9700 

-9826 
.9950 . 

1 .OO70 
1.0188 
1.0303 
1.0416 
1.05- 
1 .w. 
1.0743 
1 .OS47 

1.095 1 
1.1052 
1.1 152 
1.1250 
1.1347 
1.1443 
1.1537 
1.1629 
1.1721 
1.1812 

1.1901 
1.1989 
12076 
13162 
12248 
12332 
12415 
12497 

12f '1 

AB 



Y 
~~ ~ 

2.00 
2.05 
2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 

2.50 
2.55 
2.60 
2.65 
2.70 
2.75 
2.80 
2.85 
2.90 

2.95 
3.00 
3.05 
3.10 
3.15 

. 3.20 
3.25 
3.30 
3.35 
3.40 
3.45 

3.50 
355 
3.60 
3.65 
3.70 
3.75 
3.80 
3.85 
3.90 
3.95 

E- Y284 
TABLE A-5. (CONTINUED) 

VALUES OF LAMBDA FOR COHEN'S METHOD 

Percentage of Non-detects 

.01 .OS .10 . I S  .20 .25 .30 .35 .40  .45 .50 

.0184 .0940 ,1932 .2981 .4093 5279 .6547 

.0186 .0947 .1945 .3001 .4122 5315 .6590 

.0187 .0954 .1959 .3022 .4149 5350 .6634 

.O 188 .0960 ,1972 .3042 .4 177 S385 .6676 

.0189 .0967 .1986 .3062 .4204 5420 .6719 

.0191 .0973 .1999 .3082 .4231 5454 .6761 

.0192 .0980 .2012 .3 102 .4258 S488 .6802 

.0193 .0986 .2025 .3122 ,4285 -5522 .6844 

.O 194 .0992 .2037 .3 14 1 -43 1 1 5555 .6884 

.O 196 .0998 .2050 .3 160 .4337 ,5588 .6925 

.0197 .1OO5 .2062 .3 179 .4363 562 1 .6965 

.0198 .lo11 .2075 .3198 .4388 5654 .7W5 

.0199 .lo17 .2087 .3217 A414 3686 .7O44 

.0201 .lo23 .2099 .3236 A439 3718 .7083 

.0202 .lo29 2111 .3W A464 S750 .7122 

.0203 .lo35 .2123 .3272 A489 .578 1 .7 16 1 

.0204 .lo40 .2135 .3290 .4513 5812 .7199 

.0205 .lo46 2147 .3308 .4537 S843 .7237 

.0206 .lo52 -2158 .3326 .4562 S874 .7274 

,0207 
.02m 
.0210 
,021 1 
.0212 
,0213 
,0214 
,0215 
,0216 
,0217 
.02 18 

.lo58 

.lo63 

.lo69 

.IC74 

.lo80 

.lo85 

.lo91 

.lo96 

.1102 

.1107 

.1112 

.2170 .3344 

.2182 .3361 
2193 .3378 
9904 .3% 
2216 3 1 3  
2227 3 3 0  
2238.3447 
2249 3 6 4  
-2260 3 8 0  
2270 3 9 7  
2281 .3513 

.4585 5905 .7311 
-4609 5935 -7348 
.4633 5965 .7385 
.4654 s995 ,7422 
.4679 ,6024 .7458 
.4703 ,6054 .7494 
.4725 .6083 .7529 
.4748 .6112 .7565 

.4793 .6169 .7635 

.4816 .6197 .7670 

.mi m i  .76 

,0219 .1118 2292 .3529 .4838 .6226 .7704 
,0220 .1123 .2303 .3546 .4860 .6254 .7739 

0222 -1133 2324 -3S78 -4903 .6309 .7807 
0223 ,1138 2334 -3594 .4925 .6337 .7840 
0224 ,1143 2344 .3609 .4946 .6364 .7874 
0225 ,1148 2355 .3625 .4968 .6391 .7907 
0226 .1153 2365 .3641 .4989 6418 .7940 
0227 ,1158 2375 .3636 5010 .6445 .7973 
0228 ,1163 2385 .3672 5031 .6472 .So06 

. o m  . i n 8  2313 .35a ~ 8 8 2  .an . m 3  

.7909 

.7961 
3013 
A063 
A114 
3164 
3213 
.8262 
A31 1 
.8359 

.8407 
3454 
A501 
3548 
3594 
.8639 
A685 
3730 .ms 
3819 
.8863 
4907 
.8950 
3993 
3036 
.9079 
.9121 
.9163 
.9205 
.9246 

.9287 

.9328 
9369 
.9409 
.9449 
3489 
.9529 
.9568 
.9607 
.9646 

.9382 

.9442 

.9502 

.9562 

.9620 

.9679 
9736 
.9794 
.9850 
.9906 

9962 
1.0017 
1 .OM2 
1,0126 
1.0180 
1.0234 
1.0287 
1.0339 
1.0392 

1.0443 
1.0495 
1.0546 
1.0597 
1.0647 
1.0697 
1.0747 
1.0796 
1 . o w  
1.0894 
1 .W42 

1 .os90 
1.1038 
1.1086 
1.1 133 
1.1 180 
1.1226 
1.1273 
1.1319 
1.1364 
1.1410 

1.0984 
1.1053 
1.1122 
1.1 190 
1.1258 
1.1325 
1.1391 
1.1457 
1.1522 
1.1587 

1.1651 
1.1714 

1.1840 
1.1902 
1.1963 
1.2024 
1.2085 
1.2145 

1.2205 
12264 
12323 
1.2381 
1.2439 
1.2497 
1.2554 
1.261 1 
1.2668 
1.2724 
1.2779 

1.2835 
1.2890 
1.2945 
1.2999 
13053 
1.3107 
13160 
1.3213 
13266 
13318 

i.im 

1.2739 
1.2819 
1.2897 
1.2974 
1.305 1 
1.3127 
1.3203 
1.327 8 
1.3352 
1.3425 

1.3498 
1.357 1 
1.3642 
1.3714 
1.3784 
1.3854 
1.3924 
1.3993 
1 .a61  

1.4129 
1.4197 
1.4264 
1.4330 
1.4396 
1 .a62 
1.4527 
1.4592 
1.4657 
1.4720 
1.4784 

1.4847 
1.4910 
1.4972 
15034 
15096 
15157 
15218 
1.5279 
15339 
15399 

A 9  000095 
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Y 
4.00 
4.05 
4.10 
4.15 
4.20 
4.25 
4.30 
4.35 
4.40 
4.45 

4.50 
4.55 
4.60 
4.65 
4.70 
4.75 
4.80 
4.85 
4.90 
4.95 

5.00 
5.05 
5.10 
5.15 
5.20 
5-25 
5.30 
5135 
5.40 
5.45 

5.50 
5 5 5  
5.60 
5.65 
5.70 
5.75 
5.80 
5.85 
5.90 
5.95 
6.00 

TABLE A-5. (CONTINUED) 

VALUES OF LAMBDA FOR COHEN'S METHOD 

Percentage of Non-detects 

.01 .05 .10 .15 .20 -25 .30 .35 .40 .45 -50 

.0229 . 1 168 .2395 .3687 SO52 .6498 A038 .9685 

.0230 .1173 2405 .3702 SO72 .6525 .8070 .9723 

.023 1 . 1 178 .24 15 .3717 -5093 .655 1 .8 102 .9762 

.0232 . 1 183 .2425 .3732 .5 1 13 .6577 .8 134 .9800 

.0233 .1188 .2435 .3747 5134 .6603 3166 .9837 

.0234 .1193 .2444 .3762 5154 .6629 3198 .9875 

.0235 .1197 .2454 .3777 5174 .6654 3229 M I 3  

.0236 ,1202 .2464 .3792 5194 .6680 .8260 .9950 

.0237 .1207 .2473 .3806 5214 .6705 A291 9987 

.0238 .1212 .2483 .3821 5234 .6730 A322 1.0024 

.0239 .1216 .2492 .3836 S253 -6755 -8353 1.oO60 

.0240 .1221 2502 .3850 5273 .6780 -8384 1.0091 

.ON1 . lu j  .Zll -3864 5292 .6805 3414 1.0133 

.0241 .1230 2521 .3879 5312 .6830 .8445 1.0169 

.0242 .1235 2530 .3893 5331 .6855 3475 1.0205 

.0243 -1239 2539 .3907 5350 .6879 .8505 1.0241 
,0244 .1244 .2548 .3921 5370 .6903 .8535 1.0277 
,0245 .1248 2558 .3935 5389 ,6928 3564 1.0312 
,0246 .1253 .2567 .3949 .5407 .6952 A594 1.0348 
,0247 .1257 2576 .3963 S426 .6976 .8623 1.0383 

,0248 .1262 .2S85 .3977 5445 .7000 3653 1.0418 
,0249 .1266 3 9 4  .3990 5464 .7024 3682 1.0452 
.U49 .127Zr 2603 .4004 5482 .7047 A711 1.0487 
,0250 .1275 .2612 A018 5501 .7071 .8740 1.0521 
,0231 -1279 -2621 A031 5519 .7094 3768 1.0556 
,0252 .1284 2629 .4045 5537 .7118 A797 1.0590 
,0253 .I288 2638 . a 8  5556 .7141 3825 1.0624 
,0254 .I292 ,2647 .4071 5574 .7164 3854 1.0658 
,0255 -1296 .2656 .a85 5592 .7187 3882 1.0691 
,0255 .1301 .2664 .4098 5610 .7210 3910 1.0725 

,0256 
,0257 
,0258 
0259 
,0260 
0260 
0261 
0262 
0263 
0264 
0264 

-1305 3673 
.1309 2682 
-1313 2690 
-1318 2699 
. i3z not 
-1326 2716 
,1330 2724 
-1334 2732 

.1342 5149 
,1346 2757 

.mi n 4 1  

.4111 5628 .7233 

.4124 5646 .7256 

.4137 5663 .7278 

.4150 5681 .7301 
,4163 5699 .7323 
.4116 5716 ,7346 
.4189 5734 .7368 
.42m 5151 .7390 
.4215 5769 .7412 
,4227 5186 .7434 
.4240 5803 .7456 

.8938 
A966 
3994 
.9022 
3049 
.son 
.9104 
-9131 
.9158 
.9185 
9212 

1.0758 
1.0792 
1.0825 
1.0858 
1.0891 
1 .m 
1.0956 
1.0989 
1.1021 
1.1053 
1.1083 

1.1455 
1.1500 
1.1545 
1.1590 
1.1634 
1.1678 
1.1722 
1.1765 
1.1809 
1.1852 

1.1895 
1.1937 
1.1980 
12022 
12064 
12106 
12148 
12189 
12230 
12272 

12312 
1.2353 
1.2394 
1.2434 
1.2474 
1.2514 
12554 
12594 
12633 
12672 

12711 
1.2750 
12789 
1.2828 
12866 
13m 
12943 
13981 
13019 
13057 
13094 

1.337 1 
1.3423 
1.3474 
1.3526 
1.3577 
1.3627 
1.3678 
1.3728 
1.3718 
1.3828 

1.3878 
1.3927 
13976 
1.4024 
1.4073 
1.4121 
1.4169 
1.4217 
1.4265 
1.4312 

1.4359 
1.4406 
1.4453 
1.4500 
1.4546 
1.4592 
1.4638 
1.4684 
1.4729 

1.4820 
1.4865 
1.4910 
1.4954 
1.4999 
15043 
15087 
15131 
15175 
15218 
15262 

1.4775 

1 S458 
1.5518 
1.5577 
1.5635 
1 S693 
1575 1 
1.5809 
1.5866 
1 S924 
1.5980 

1.6037 
1.6093 
1.6149 
1.6205 
1.6260 
1.6315 
1.6370 
1.642 
1.6479 
1.6533 

1 .e87 
1.6641 
1.6694 
1.6347 
1.6800 
1.6853 
1.6905 
1.6958 
1.7010 . 
1.7061 

1.71 13 
1.7164 
1.7215 
1.7266 
1.73 17 
1.7368 
1.7418 
1.7468 
1.7518 
1.756' 
1.76 

A-10 



TABLE A-6. 

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE 
NON-PARAMETRIC UPPER TOLERANCE LIMITS 

N B< maximum) B(2nd largest) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 is 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
.32 
33 
34 
35 

- 36 
37 
38 
39 
40 

5.0 
22.4 
36.8 
47.3 
54.9 
60.7 
65.2 
68.8 
71.7 
74.1 

76.2 

79.4 
80.7 
81.9 
82.9 
83.8 
84.7 
85.4 
86.1 

86.7 
87.3 
87.8 
88.3 
88.7 
89.1 
89.5 
89.9 
90.2 
905 

90.8 
91.1 
91.3 
91.6 
91.8 
92.0 
92.2 
92.4 
92.6 
92.8 

77.9 

-- 
2.6 

13.6 
24.8 
342 
41.8 
48.0 
53.0 
57 .O 
60.6 

63.6 
663 
68.4 
70.4 
72.0 
73.6 
75 .O 
763  

78.4 
77.4 

79.4 
80.2 
81.0 
81.8 
82.4 
83.0 
83.6 
84.2 
84.6 
85.2 

85.6 
86.0 
86.4 
86.8 
87.2 
87.4 
87.8 
88.2 
88.4 
88.6 

e+' - . 1284 

&I1 



- 
TABLE A-6. (CONTINUED) 

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE 
NON-PARAMETRIC UPPER TOLERANCE LIMITS 

N B(maximum) p(2nd largest) 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

93 .O 
93. f 
93.3 
93.4 
93.6 
93.7 
93.8 
93.9 
94.1 
94.2 

94.7 
95.1 
95 .5 
95.8 
96.1 
96.3 
96.5 
96.7 
96.9 
97.0 

89.0 
89.2 
89.4 
89.6 
89.8 
90.0 
90.2 
90.4 
90.6 
90.8 

91.6 
92.4 
93.0 
93.4 
93.8 
94.2 
94.6 
94.8 
95.0 
95.4 



TABLE A-7. 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

' 2 5  
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

- 

CONFIDENCE LEVELS FOR NON-PARAMETRIC 
PREDICTION LIMITS FOR N=1(1)100 

NUMBER OF FUTURE SAMPLES 

k=2  k=3 k = 4  k=5 k=6 k=7 k=8 k = l  

50.0 
66.7 
75 .O 
80.0 
83.3 
85.7 
87.5 
88.9 
90.0 
90.9 

91.7 
92.3 
92.9 
93.3 
93.8 
94.1 
94.4 
94.7 
95 .o 
952 

953 
95.7 
95.8 
96.0 
96.2 
96.3 
96.4 
96.6 
96.7 
96.8 

96.9 
97.0 
97.1 
97.1 
972 
973 
97.4 
97.4 
975 
97.6 

33.3 
50.0 
60.0 
66.7 
71.4 
75.0 
77.8 
80.0 
81.8 
83.3 

84.6 
85.7 
86.7 
87.5 
88.2 
88.9 
89.5 
90.0 
90.5 
90.9 

91.3 
91.7 
92.0 
92.3 
92.6 
92.9 
93.1 
93.3 
93.5 
93.8 

93.9 
94.1 
94.3 
94.4 
94.6 
94.7 
94.9 
95.0 
95.1 
952 

25.0 
40.0 
50.0 
57.1 
62.5 
66.7 
70.0 
72.7 
75.0 
76.9 

78.6 
80.0 
81.3 
82.4 
83.3 
84.2 
85.0 
85.7 
86.4 
87.0 

87.5 
88.0 
885 
88.9 
89.3 
89.7 
90.0 
90.3 
90.6 
90.9 

91.2 
91.4 
91.7 
91.9 
92.1 
923 
923 
927 
929 
93.0 

20.0 
33.3 
42.9 
50.0 
55.6 
60.0 
63.6 
66.7 
69.2 
71.4 

73.3 
75 .O 
76.5 
77.8 
78.9 
80.0 
81.0 
81.8 
82.6 
83.3 

84.0 
84.6 
85.2 
85.7 
86.2 
86.7 
87.1 
87.5 
87.9 
88.2 

88.6 
88.9 
89.2 
89.5 
89.7 
90.0 
902 
90.5 
90.7 
90.9 

16.7 
28.6 
37.5 
44.4 
50.0 

. 54.5 
58.3 
61.5 
64.3 
66.7 

68.8 
70.6 
72.2 
73.7 
75 .O 
76.2 
77.3 
78.3 
79.2 
80.0 

80.8 
81.5 
82.1 
82.8 
83.3 
83.9 
84.4 
84.8 
85.3 
85.7 

86.1 
86.5 
86.8 
87.2 
87.5 

.87.8 
88.1 
88.4 
88.6 
88.9 

14.3 
25.0 
33.3 
40.0 
45.5 
50.0 
53.8 
57.1 
60.0 
62.5 

64.7 
66.7 
68.4 
70.0 
71.4 
72.7 
73.9 
75.0 
7 6.0 
76.9 

77.8 
78.6 
79.3 
80.0 
80.6 
8 1.3 
81.8 
82.4 
82.9 
83.3 

83.8 
84.2 
84.6 
85.0 
85.4 
85.7 
86.0 
86.4 
86.7 
87.0 

12.5 11.1 
22.2 20.0 
30.0 27.3 
36.4 33.3 
41.7 38.5 
46.2 42.9 
50.0 46.7 
53.3 50.0 
56.3 52.9 
58.8 55.6 

61.1 57.9 
63.2 60.0 
65 .O 61.9 
66.7 63.6 
68.2 65.2 
69.6 66.7 
70.8 68.0 
72.0 69.2 
73.1 - 70.4 
74.1 71.4 

75.0 72.4 
75.9 73.3 
76.7 74.2 
77.4 75.0 
78.1 75.8 
78.8 76.5 
79.4 77.1 
80.0 77.8 
80.6 78.4 
81.1 78.9 

81.6 79.5 
82.1 80.0 
825 80.5 
82.9 81.0 
83.3 81.4 
83.7 81.8 
84.1 823 
84.4 82.6 
84.8 83.0 
85.1 83.3 

A013 000099 



N 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
36 
SI 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
?7 
78 
79 
80 

TABLE A-7. (CONTINUED) 

CONFIDENCE LEVELS FOR NON-PARAMETRIC 
PREDICTION LIMITS FOR N=l(l)100 

NUMBER OF FUTURE SAMPLES 

k=l k=2 k o 3  k = 4  k r 5  k=6 k = 7  k=8 

97.6 
97 -7 
97.7 
97.8 
97.8 
97.9 
97.9 
98.0 
98.0 
98.0 

98.1 
98.1 
98.1 
98.2 
983 
98.2 
98.3 
98.3 
98.3 
98.4 

98.4 
98.4 
98.4 
985 
985 
985 
985 
98.6 
98.6 
98.6 

98.6 
98.6 
98.6 
98.7 
98.7 
98.7 
98.7 
98.7 
98.8 
98.8 

95.3 
95.5 
95.6 
95.7 
95.7 
95.8 
95.9 
96.0 
96.1 
96.2 

96.2 
96.3 
96.4 
96.4 
96.5 
96.6 
96.6 
96.7 
96.7 
96.8 

96.8 
96.9 
96.9 
97.0 
97.0 
97.1 
97.1 
97.1 
973 
973 

97.3 
97.3 

- 97.3 
97.4 
97.4 
97.4 
975 
975 
975 
97.6 

93.2 
93.3 
93.5 
93.6 
93.8 
93.9 
94.0 
94.1 
94.2 
94.3 

94.4 
94.5 
94.6 
94.7 
94.8 
94.9 
95.0 
95.1 
95.2 
95.2 

95.3 
95.4 
95.5 
95.5 
95.6 
95.7 
95.7 
95.8 
95.8 
95.9 

95.9 
96.0 
96.1 
96.1 
96.2 
96.2 
96.3 
96.3 
96.3 
96.4 

91.1 
91.3 
91.5 
91.7 
91.8 
92.0 
92.2 
92.3 
92.5 
92.6 

92.7 
92.9 
93.0 
93.1 
93.2 
93.3 
93.4 
93.5 
93.7 
93.8 

93.8 
93.9 
94.0 
94.1 
94.2 
94.3 
94.4 
94.4 
94.5 
94.6 

94.7 
94.7 
94.8 
94.9 
94.9 
95 .O 
95. I 
95.1 
952 
953 

89.1 
89.4 
89.6 
89.8 
90.0 
90.2 
90.4 
90.6 
90.7 
90.9 

91.1 
91.2 
91.4 
91.5 
91.7 
91.8 
91.9 
92.1 
92.2 
92.3 

92.4 
92.5 
92.6 
92.8 
92.9 
93.0 
93.1 
932 
932 
93.3 

93.4 
93.5 
93.6 
93.7 
93.8 

. 93.8 
93.9 
94.0 
94.0 
94.1 

87.2 
87.5 
87.8 
88.0 
88.2 
88.5 
88.7 
88.9 
89.1 
89.3 

89.5; 
89.7 
89.8 
90.0 
90.2 
90.3 
90.5 
90.6 
90.8 
90.9 

91.0 
91.2 
91.3 
91.4 
91.5 
91.7 

91.9 
92.0 
92.1 

92.2 
92.3 
92.4 
925 
92.6 
92.7 
92.0 
92.9 
92.9 
93.0 

91.8 

85.4 
85.7 
86.0 
86.3 
86.5 
86.8 
87.0 
87.3 
87.5 
87.7 

87.9 
88.1 
88.3 
88.5 

88.9 

89.2 
89.4 
89.6 

89.7 
89.9 
90.0 
90.1 
90.3 
90.4 
90.5 
90.7 
90.8 
90.9 

91 .o 
91.1 
91.3 
91.4 
915 
91.6 
91.7 
91.0 
91.9 
92.0 

88.7 

89. 1 

83.7 
84.0 
84.3 
84.6 
84.9 
85.2 
85.5 
85.7 
86.0 
86.2 

86.4 
86.7 
86.9 
87.1 
87.3 
87.5 
87.7 
87.9 
88.1 
8 8 3  

88.4 
88.6 

88.9 
89.0 
892 
89.3 
895 
89.6 
89.7 

89.9 
90.0 
90.1 
903 
90.4 
905 
90.6 
90.7 
90.8 
90.9 

88.7 
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TABLE A-7. (CONTINUED) 

- ~~~ 

N 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

91 
92 
93 
94 
93 
96 
97 
98 
99 

100 

-. 7884 CONFIDENCE LEVELS FOR NON-PARAMETRIC 
PREDICTION LIMITS FOR N=1(1)100 

NUMBER OF FUTURE SAMPLES 

k = l  kt2 k = 3  k = 4  k=5 k=6 k = 7  k = 8  

98.8 97.6 96.4 
98.8 97.6 96.5 
983 97.6 96.5 
98.8 97.7 96.6 
90.8 97.7 96.6 
98.9 97.7 96.6 
98.9 97.8 96.7 
98.9 97.8 96.7 
98.9 97.8 96.7 
98.9 97.8 96.8 

,953 94.2 93.1 92.0 91.0 
95.3 94.3 93.2 92.1 91.1 
95.4 94.3 93.3 92.2 91.2 
95.5 94.4 93.3 92.3 91.3 
95.5 94.4 93.4 92.4 91.4 
95.6 94.5 93.5 92.5 91.5 
95.6 94.6 93.s 92.6 91.6 
95.7 94.6 93.6 92.6 91.7 
95.7 94.7 93.7 92.7 91.8 
95.7 94.7 93.8 92.8 91.8 

98.9 97.8 96.8 95 .a 94.8 93.8 92.9 91.9 
98.9 97.9 96.8 95.8 94.8 93.9 92.9 92.0 
98.9 97.9 96.9 95.9 94.9 93.9 93.0 92.1 
98.9 97.9 96.9 95.9 94.9 94.0 93.1 92.2 
99.0 97.9 96.9 96.0 95.0 94.1 93.1 92.2 
99.0 98.0 97.0 96.0 95.0 94.1 932  92.3 
99.0 98.0 97.0 96.0 95.1 94.2 93.3 92.4 
99.0 98.0 97.0 96. I 95.1 94.2 93.3 92.5 
99.0 98.0 97.1 96.1 95.2 94.3 93.4 92.5 
99.0 98.0 97.1 96.2 95.2 94.3 93.5 92.6 

A-15 
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the non-paramemc alternative amactive. However, the presence of nondctects prevents a unique 
ranking of the concenOatjon values, since nondcttcts art, up to the limit of meaSlPcmenf all tied at 
the same value. 

To get around this problem, two steps arc necessary. First, in the presence of ties (e.g., 

n o n d c m ) ,  all tied observations should receive the same rank. This rank (sometimes called the 
midrank (Lehmann, 1975)) is compured as the average of the ranks h t  would be given to a group 
of ties if the tied values actually differed by a M y  amount and could be ranled uniquely. For 
exampie, if the first four ordered observations arc all nondetects, the midrank given to each of 
these samples would be equal to (1+2+3+4)/4=2.5. If the next highest measurement is a unique 
detect its rank would bt 5 and so on until all obscrvdons arc approprhtcly ranktd 

The second step is to compute the KruskaLWallis sutistic as described in the In& Final 
Guidance, using the midranks computed for the tied values. Then an adjustment to the Kruskal- 
Wallis statistic must be made to account far the prrscnce of ties. This adjustment is described on 
page 5- 17 of the Interim Final Guidance and requires computation of the famula: 

where g equals the number of p u p s  of distinct tied obtervations and ti is the number of 
obstrvations in the ith tied group. 

EXAMPLE U 

Use the non-paramemc analysis of miancc on thc fallowing data to dcOCnnint whether thcrr 
is evidence of conmmimion at tht monitaring sire. 

4 4 . 4  4 4 
7.5 4 . 12.5 13.7 20.1 
4 e5 8.0 15.3 35.0 
4 4 4 202 28.2 
6.4 <5 113 25;l 19.0 



Draft 1/28/93 
‘+ 

S 0 L UTI0 N 

Sup 1. Compuu the o v d  percentage of nondctects. In this case, nondctccts account for 48 
percent of the data. The usual parameuic analysis of variance would be inapppnate.  
Use the Kruskal-Wallis test instead, pooling both background wells into one group and 
&g each compliance well as a separate group. 

Compute ranks for all the data including tied observations (e.g., nondctccts) as in the 
following table. Note that each nondctect is given h e  same midtank, qual to the 
average of the first 12 unique ranks. 

Step 2. 

Toluenc Ranks 
Background Wells compiianct wells 

Month well 1 Well 2 well 3 well 4 well 5 

6.5 6.5 
18 21 

1 6.5 6.5 6.5 
2 14 6.5 17 
3 6.5 6.5 15 19 25 
4 6.5 6.5 6.5 22 24 
5 13 6.5 16 23 20 

.-[ N(N l2 + 1) c:, 3 3 ( N + 1 )  

3 H=-[- 12 79’ +- 612 +- 88.5’ +- 96.5’ -7840.56. 
25.26 10 5 5 .  5 

Step 5. Compute the adjustment for ties. Tharc is only one grotrp of distinct tied observations, 
Containing 12 samples. Thus, the adjuseed Knukal-Wdlh staxisnc is given by: 
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Step 6. 

stcp 7. 

stcp 8. 

= 11.87. 10.56 H‘= 

Compare the calculated value of H‘ to the tabulated Chi-square vdue with (K-l)= (# 

Chi-quart critical v&e, then is evidence of signifkant differences between the well 
groups. Post-hoc pairwisc comparisons azc ntctssary. 

calculate the critical difference for compliance well comparisons to the b a c k p u n d  
using the farmula on p. 5-16 of the Interim Final Guidance document. Since the number 
of samples at each complianct well is four, the same critical difference can be used for 
each companson, namely, 

groups-l)=3 df ,  %2, 0 ~ 7 . 8 1 .  Since the observed V ~ U C  of 11.87 is p a t e r  than the 

F a n  the differences between the average ranks of each complianct well and the 
backgrwnd and compc thcse diffucnccs to tht uibl value o f  8.58. 

Well 3: E3-Eb = 12.2-7.9 = 4.3 

Well5: Bs-?i, = 19.3-7.9 = 11.4 

Since the average tanL dif€crcnccs at wells4 and 5 exceed the critical di&renct, tfien is 
signrficant e*= o f c o n ~ m  at wells 4 and 5, but not at wcll3. 

3.2 WILCOXON RANK-SUM TEST FOR TWO GROUPS 

When a singie compiirrnct well group is being compared to background dam and a non- 
paxamctric testis needed& KrusM-Wallis pl#rdun should be rep lad  by the Wilcoxan Rank- 
Sum est (Lchmann, 1975; also known as the two-sample Mann-Whimcy U test). Far most 
ground-watu applications, the Wilcoxon test should be used wheucver the pmpardon of 
nondem in thecambinddam mezeds  15 parent However, roprwidt validruuls. do not 

ust tht wilwrroo OCStunicrc tk Compliance well and backgrmnddata groups both contain at least 
four samples cacb. 

45 0083.04 
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by Ci and the ranLs Of the background Samples by Bi. Then add UP the ranks Of the compliance 
mplcs and subuact n(n+ly2 to get the Wdcoxon statistic W: 

n e  muonale of the Wilcoxon test is that if the ranks of the complianct data arc quite large 
M v e  to the background fBsLks, thw the hypothesis that the ~~mpliculct and background values 
came from the tamepopulaaon shouidbcrjecced Large valuesofthe statistic W giveevidence of 
colrtaminatimatthecompiianccdsioc. 

To find the critical value of W, a Nonnal approximation to its distribution is used. The 
apecoed value and standard M o n  of W under dre null hypotheris of no contamhatian an 

1 
2 

E(W) = -mi 

EXAMPLE U 



I.CONSTRUC"Im OF POWER CURVES 

TO coosmact power c u ~ e s  for each of the paramemc and non-paramemc retesting s m c g c s ,  
standard N d  deviates were gencrattd on an IBM mainframe computer using SAS. The 

badtground level mean concenuation was set to zero, while the alternative mean concentration level 
WBS incr#ncnoed in steps of 64.5 standardid units above the background level. At each incrtmcnt, 
5()oO iterations of the retesting strategy were simulated; the proportion of iterations indicating 
contamination at any one of the wells in the d o w n m e n t  monitoring newOT1L was him as the 
effmivt power of the retesting strategy (for that A and configuration of background samples and 
monitoring wells). 

Power values for the EPA Rcfertncc Power c;\pvcs were not Sirnuland but represent analytical 
ralculations based on the n o n c e a d  t-dismbunm with nonceaaality parameter A SAS program far 
simulating the tffective power of any of the parameuic or non-paramePic retesting s~atcgies arc 
presented below. 

%LET WLl -5: 
%LET UL2 4; 
%LET UL3 -5; 
%LET WM -5; 
%LET wt5 -20; 
%LET UL6 -20; 
%IzT UL7 -20; 
%LET UL8 -20; 
%LET -9 -50; 
%LET ULlO-SO; 

%LET TL1 -0.95; 
%LET TL2 -0.99; 
#LET TL3 -0.99; 
%LET TL4 4.99; 
%LET TLS -0.95; 
%LET TI.6 -0.95; 
% U T  TL7 -0.95; 
%LET TL8 10.95; 
%LET TL9 =0.9St 
%LET TLlO=O. 951 
kl 

?LET PLl -0.80; 
%LET PL2 -0 .85 ;  
%LET PL3 -0 .80;  
%LET PL4 -0.85; 
%LE? PLS -0.95; 
%LET PL6 -0.91; 
%LET PL7 -0.95; 

%LET PL9 -0.98; 
UET PLlO=O.OO; 

%LET PLe -0.91; OGO106  



%LET BGll-24; 
%LET BG12-24; 
#LET BG13-24; 
%LET BG14-24; 
#LET 8615-24; 
#LET BG16-24; 
#LET BG17-24; 
#LET BGl8-24; 

#LET BG20024; 
#LET Bc19-24; 

#LET BG2l-8; 
#LET BGZ2-8; 
#LET 0623-16; 
#LET BG24-16; 
%LET BGZS-24; 
#LET 8626-16: 
#LET 8627-16; 
#LET BG28-16; 
#LET BG29-16; 
#LET BG30-16; 
%LET 8631-16; 
#LET BG32=24; 
%LET BG33-16; 
%LET BG34-16; 
#LET 8635-16; 

%LET WLl1-50; 
%LET WL12-50; 
#LET WLl3-50; 
#LET WL14-50; 
#LET WL15-50; 
#LET WL16-100; 
#LET WLl7-100; 
%LET ULl8-100; 
#LET WL19=100; 
#LET -0-100; 
#LET WLZ1-20; 
%LET -2-5; 
#LET -3-5; 
#LET -4-5; 
#LET VtL25-5; 
#LET -6-20; 
# U T  WL27-20; 
#LET -8-50; 
#LET UL29-50; 
#LET WL30-50: 
#LET WL31-SO; 
#LET -2-100; 
#LET -3-100; 
#LET wL34-100; 
#LET wL35-100; 

#LET TL11-0.99: 
\LET TLl2-0.99; 
#LET TL13-0.99: 
#LET TL14-0.98: 
#LET TLlS-0.98 ; 
#LET TL16-0.98; 
#LET TLl7r0.98; 
#LET TL18-0.99; 

#LET TL20=0.99; 
#LET TL21-0.95; 
#LET TL2210.95; 
#LET TL23-0.95; 
#LET TU4-0.95: 
#LET TL25-0.95; 
#LET TL26-0.95; 
#LET TL27-0.95; 
#LET TL28-0.98; 
#LET TU9-0.98; 
#LET m 0 - 0 . 9 9 ;  
#LET TL3l-0.99; 
#LET TL32-0.98; 
#LET TL33-0.96; 
#LET TL34-0.99; 
#LET TL3S-0.99; 

#LET TL19=0.99; 

% U T  PL14m0.95; 
4LET PLlS-0.97; 
#LET PL16-0.97; 
#LET PLl7r0.99;  
#LET PLl8-0.95; 
#LET PL19rO. 97; 
#LET PL20-0.98; 
#LET PL21-0.96; 
#LET PL22r0.90; 
#LET PL23-0.65; 
$LET PL24=0.90; 
%LET PL25-0.90; 
#LET PL26-0.95: 
#LET PL27r0.97; 
#LET PL28=0.95; 
#LET PL29-0.97 ; 
%LET PUO-0.90; 
tLET PL31=0.92; 
#LET PL32-0.98; 
#LET PI.33-0.98; 
#LET P~34-0 .95;  
#LET PL35r0.96; 

simulation variable  t o  conmon variable  names; 

DO DELTA=O TO S ' B Y  0 . 5 ;  
*** I n i t i a l i z e  TPO, TPl C TP2 t o  0 k f o r a  mntering s imuht ion;  

TPO-0; 
TP1-0; 
TP2-0; 

DO J-1 TO &REPEAT; 
*** Initialize QJTO, CNTl i -2 to 0; 

-0-0 ; 
mJTl-0; 
mT2=0; 



..- 

*** Print i t era t ion  infomat ion every 100 i t era t ions ;  
1-&I; 

END: 
0uTPvT: 
END; 
RUN; 

DATA OUTSAS.PcvRvE&I; SET ITERATE(KEEP-BC WL TL PL T P O  TP1 T P Z  DELTA); 
RUN: 

PROC PRINT DATA=OUTSAS. PCmVEL f ; 
FORPUT TPO TP1 TP2 8 . 4 ;  
T1TLEl"TESf PRINT OF P M N C  S=TION PCURnCI"; 
TITLEZ'NUIZBER OF I m T I O N S  &REPEAT"; 

RUN: 



%LET BGf 4; 
%LET BG2 -16; 
%LET BG3 -24; 
%LET BG4 -8;  
%LET BGS 116; 
%LET BG6 124; 
%LET BG7 -8; 
%LET BG8 ~ 1 6 ;  
%LET BG9 ~ 2 4 ;  
%LET BG10-8; 
NLET BGll-16; 
NLET BGl2-24; 
%LET BG13-32; 
%LET BG14=32; 
%LET BG15-32; 

%LET WLI 4; 
%LET WL2 -5; 
%LET WL3 -5: 
%LET WL4 -20; 

I' %LET WLS -20; 
QLET WL6 -20; 
#LET wL7 =so; 
%LET WL8 =SO; 
%LET WL9 =So: 
%LET WLlO-100; 
%LET WL11-loo; 
NLET WL12-100; 
NLET WLl3-100; 
%LET WLl4-20; 
%LET WLlS-SO; 

dc 

&IucRo NPARSm; 
DATA ITERATE; 
*** Set changing simulation variable to COmmOn Variable names; 
BCl&LBG&f; 
W I r C L W t L I ;  

00 

DO 

' DO 

DELTA=O TO 5 BY 0 . 5 ;  
*** fnitialita PLX variables to 0 before antaring siaulation; 
PLOD0 : 
PLl-0 ; 
PLZA=O; 
PUBDO ; 
PL3A-0 ; 
PL3B-0 : 

J-1 TO &REPEAT; 
*** Initialize CNTr variables to 0 ;  
c)rro-o; 
QSTl=O; 
m 2 = 0 ;  
CNTS=O; 
cNT4=0 ; 
CNT5-0; 



*** Print i t era t ion  information eve- X i terat ions:  
I=& I ; 

END: 
OUTPUT; 
EM); 
RUN; 

PROC PRXNT DATAIOUTSAS-NCVRVELI; 
FORHAT PLO PLl PL2A P U B  PL3A PL3B 8 .4 ;  
1XTLEl"TEST PRINT OF NON-PARA13ETRIC SIMULATION NCURVEC 1"; 
TZTLEZ"NtRIBW1 OF ITERATIONS - CREPEAT'; 

RUN; 
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11. PARAMFfRIC R-NG STRATEGIES 

POWER CURVE FOR 95% TOLERANCE 
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POWER CURVE FOR 98% TOLERANCE 
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POWER CURVE FOR 98% TOLERANCE 
AND 95% P m I m O N  LIMIT 
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POWER CURVE FOR 98% TOLERANCE 
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POWER CURVE FOR 98% TOLERANCE 
AND 98% PREDICTION LIMIT 
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HI. NON-PARAMETRIC RETESTING STRATEGIES 
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POWER CURVE FOR NON-PARAMETRIC 
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POWER CURVE FOR NON-PARAMETRIC 
PREDICTION LIMITS 
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POWER CURVE FOR NON-PARAMETRIC 
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