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DISCLAIMER

This document is intended to assist Regional and State personnel in evaluating ground-water
monitoring data from RCRA facilifes. Conformance with this guidance is expected to result in
statistical methods and sampling procedures that meet the regulatory standard of protecting human
health and the environment. However, EPA will not in all cases limit its approval of statistcal

methods and sampling procedures to those that compart with the guidance set forth herein. This
guidance is not a regulation (i.e., it does not establish a standard of conduct which has the force of

law) and should not be used as such. Regional and State personnel should exercise their discretion
in using this guidance document as well as other relevant information in choosing a statistical
method and sampling procedure that meet the regulatory requirements for evaluating ground-water
monitoring data from RCRA facilities.

This document has been reviewed by the Office of Solid Waste, U.S. Environmental
Protection Agency, Washington, D.C., and approved for publication. Approval does not signify
that the contents necessarily reflect the views and policies of the U.S. Environmental Protection
‘Agency, nor does mention of wade names, commercial products, or publications consttute
endorsement or recommendation for use.
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STATISTICAL ANALYSIS OF
GROUND-WATER MONITORING DATA
AT RCRA FACILITIES

ADDENDUM TO INTERIM FINAL GUIDANCE

JULY 1992

This Addendum offers a series of recommendations and updated advice concerning the
Interim Final Guidance document for statistical analysis of ground-water monitoring data. Some
procedures in the original guidance are replaced by altemative methods that reflect more current
thinking within the statistics profession. In other cases, further clarification is offered for currently
recommended techniques to answer questions and address public comments that EPA has received
both formally and informally since the Interim Final Guidance was published.

1. CHECKING ASSUMPTIONS FOR STATISTICAL
PROCEDURES

Bmmymmmmmm&ldmmsmwmmofmﬁmaﬂ
statistical tests and procedures require certain assumptions for the methods to be used carrectly and
for the results to have a proper interpretation. Two key assumptions addressed in the Interim
Guidance concem the distributional properties of the dam and the need for equal variances among
subgroups of the measurements. In the Addendum, new techniques are outlined for testing both
assumptions that offer distinct advantages over the methods in the Interim Final Guidance.

1.1 NORMALITY OF DATA

Most statistical tests assume that the data come from a Normal distribution. Its density
function is the familiar bell-shaped curve. The Normal distribution is the assumed underlying
mode! for such procedures as parametric analysis of variance (ANOVA), t-tests, tolerance
intervals, and prediction intervals for future observarions. Failure of the data to follow a Normal
dismribution at least approximately is not always a disaster, but can iead to false conclusions if the
data really follow a mare skewed distribution like the-Lognormal. This is because the exweme tail
behaviar of a data distribution is often the most critical factor in deciding whether 10 apply a
statistical test based on the assumption of Narmality.

' 000007
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The Interim Final Guidance suggests that one begin by assuming that the original daw are
Normal prior to testing the distributional assumpdions. If the statistical test rejects the model of
Normality, the dam can be tested for Lognormality instead by taking the nawral logarithm of each
observation and repeating the test If the original data are Lognormal, taking the nawral logarithm
of the observations will result in data that are Normal. As a consequence, tests for Normality can
- also be used to test for Lognormality by applying the tests to the logarithms of the data.

Unfortunately, all of the available tests for Normality do at best a fair job of rejecting non-
Normal dats when the sample size is small (say less than 20 to 30 observations). That is, the tests
do not exhibit high degrees of smrstcal power. As such, small samples of untransformed
Lognormal data can be accepted by a test of Normality even though the skewness of the data may
lead to poor statistical conciusions later. EPA's experience with environmental concentration data,
and ground-water data in partcular, suggests that a Lognormal distribution is generally more
appropriate as a defauit statstical model than the Normal distribution, a conclusion shared by
researchers at the United States Geological Survey (USGS, Dennis Helsel, personsl
communicaton, 1991). There also appears to be a plausible physical explanation as to why
pollutant concentrations so often seem to follow a Lognormal partern (Ot, 1990). In Ott's model,
pollutant sources are randomly diluted in a multiplicative fashion through repeated dilution and
mixing with volumes of uncontaminated air or water, depending on the surrounding medium.
Such random and repeated dilution of poliutant concentrations can lead mathematically to.a
Lognormal distribution.

Because the Lognormal distribution appears to be a better default statistical model than the
Normal distribution for most ground-water dat, it is recommended that all dam first be logged
prior to checking distributional assumptions. McBean and Rovers (1992) have noted that
"[s}upport for the lognormal distribution in many applications also arises from the shape of the
distributdon, namely constrained on the low side and unconstrained on the high side.... The
logarithmic transform acts to suppress the outliers so that the mean is a much better representation
of the central tendency of the sample data."

Transformation to the logarithmic scaie is not done to make "large numbers look smaller.”
Performing a logarithmic or other monotonic ransfarmation preserves the basic ordering within a
dat set, 3o that the data are merely rescaled with a different set of units. Just as the physical
difference between 80° Fahrenheit and 30° Fahrenheit does not change if the temperatures are
rescaled or mansformed to the numerically lower Celsius scale, so too the basic statistical

relasionships berween dam measurements remain the same whether or not the log ransformarion is
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applied What does change is that the logarithms of Lognarmally diszributed data are more nearly

Normal in character, thus satisfying a key assumption of many statistical procedures. Because of
this fact, the same tests used to check Normality, if run on the logged data, become tests for

Lognormality.

If the assumption of Lognormality is not rejected, further swartistical analyses should be
performed on the logged observarions, not the original data. If the Lognormal diszribudon is
rejected by a statistical test, one can either test the Normality of the original data, if it was not
already done, ar use a non-paramewic technique on the ranks of the observations.

If no data are initially available to test the distributional assumptdons, "referencing” may be
employed to justify the use of, say, 2 Normal or Lognormal assumption in developing a statistical
testing regimen at a particular site. "Referencing” involves the use of historical dam or data from
sites in similar hydrogeologic settings to justify the assumptions applied to currently planned
statistical tests. These initial assumptions must be checked when data from the site become
available, using the procedures described in this Addendum. Subsequent changes:to the initial
assumptions should be made if formal testing contradicts the initial hypothesis.

1.1.1 Interim Final Guidance Methods for Checking Normality

The Interim Final Guidance outlines three different methods for checking Normality: the
Coefficient-of-Variation (CV) test, Probability Plots, and the Chi-squared test. Of these three,
only Probability Plots are recommended within this Addendum. The Coefficient-of-Variation and
the Chi-squared test each have potential problems that can be remedied by using alternarive tests.
These alternatives include the Coefficient of Skewness, the Shapiro-Wilk test, the Shapiro-Francia
test, and the Probability Plot Correlation Coefficient.

The Coefficient-of- Variation is recommended within the Interim Guidance because it is easy
to calculate and is amenable to small sample sizes. To ensure that 2 Narmal model which predicts a
significant fraction of negative concentration values is not finted to positive data, the Interim Final
Guidance recommends that the sample Coefficient of Variation be less than one; otherwise this
"test” of Normaliry fails. A drawback to using the sample CV is that for Normaily distributed data,
one can often get a sample CV greater than one when the true CV is only between 05 and 1. In
other wards, the sample CV, being a random variable, often estimates the true Coefficient of
Variation with some error. Even if a Normal distribution model is appropriate, the Coefficient of
‘Viariation test may reject the model because the sample CV (but nox the gue CV) is too large.
0060009
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The real purpose of the CV is to estimate the skewness of a dataset, not to test Normality.
Truly Normal data can have any non-zero Coefficient of Variation, though the larger the CV, the
greater the proportion of negative values predicted by the model. As such, a Normal distibution
with large CV may be 2 poar model for positive concentration data. However, if the Coefficient of
Variation test is used on the logarithms of the data to test Lognormality, negatve logged
concentrations will often be expected, nullifying the rationale used to support the CV test in the
first place. A better way to estimate the skewness of a dataset is to compute the Coefficient of

Skewness directly, as described below.

The Chi-square test is also recommended within the Interim Guidance. Though an acceprable
goodness-of-fit test, it is not considered the most sensitive or powerful test of Normality in the
current literature (Gan and Koehiler, 1990). The major drawback to the Chi-square test can be
explained by considering the behavior of parametric tests based on the Normal distribution. Most
tests like the t-test or Analysis of Variance (ANOVA), which assume the underlying data to be
Normally distributed, give fairly robust results when the Normality assumption fails over the
middle ranges of the data distribution. That is, if the extreme tails are approximately Normal in
shape even if the middle part of the density is not, these parametric tests will still tend to produce
valid results. However, if the exoreme tails are non-Normal in shape (e.g., highly skewed),
Normal-based tests can lead to false conclusions, meaning that either a ransformation of the data
or a non-parametric technique should be used instead.

The Chi-square test entails a division of the sampie data into bins or cells representing
distnct, non-overiapping ranges of the data values (see figure below). In each bin, an expected
value is computed based on the number of dama points that would be found if the Normal
distribution provided an appropriate model. The squared difference between the expected number
and observed number is then computed and summed over all the bins to caiculate the Chi-square

CHI SQUARE GOODNESS OF FIT

..// AN

000010
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If the Chi-square test indicates that the data are not Normally distributed, it may not be clear
what ranges of the dara most violate the Normality assumption. Departures from Normality in the
middie bins are given nearly the same weight as departures from the exreme tail bins, and all the
departures are summed together to form the test statistic. As such, the Chi-square test is not as
powerful for detecting departures from Normality in the extreme tails of the data, the areas most
crucial to the validity of parametric tests like the t-test or ANOVA (Miller, 1986). Furthermore,
even if there are departures in the tails, but the middle portion of the data distribution is
approximately Normal, the Chi-square test may not register as statistically significant in certain
cases where berter tests of Normality would Because of this, four alternative, mare sensitive tests
of Normality are suggested below which can be used in conjunction with Probability Plots.

1.1.2 Probability Plots

As suggested within the Interim Final Guidance, a simple, yet useful graphical test for
Normality is to plot the data on probability paper. The y-axis is scaled to represent probabilities
according to the Normal dismribution and the daw are arranged in increasing order. An observed
value is plotted on the x-axis and the proporton of observations less than or equal to each observed
value is plorted as the y-coordinate. The scaie is constructed so that, if the data are Normal, the
points when plonted will approximate a straight line. Visually apparent curves or bends indicate
that the data do not follow 2 Normal distribution (see Interim Final Guidance, pp. 4-8 t0 4-11).

Probability Plots are particularly useful for spotting irregularities within the data when
compared to a specific distributdonal model like the Normal. It is easy to determine whether
departures from Normality are occurring more or less in the middie ranges of the data or in the
extreme wmils. Probability Plots can also indicate the presence of possible outlier values that do not
follow the basic partern of the data and can show the presence of significant positive or negative
skewness.

If a (Normal) Probabiliry Plot is done on the combined data from several wells and Normality
is accepted, it implies that all of the data came from the same Normal distribution. Consequently,
each subgroup of the data set (e.g., observations from distinct wells), has the same mean and
standard deviation. If a Probability Plot is done on the data residuals (each value minus its
subgroup mean) and is not a straight line, the interpretation is more complicated. In this case,
cither the residuals are not Normal, or there is a subgroup of the data with a Normal distribution
but a different mean or c_andard deviation than the other subgroups. The Probability Plot will

indicate a deviation from the underlying N i ion either way.
a deviaton ying Narmality assumption way 000011
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The same Probability Plot technique may be used to investigate whether a set of data or
residuals follows the Lognormal distribution. The procedure is the same, except that one first
replaces each observation by its namral logarithm. After the data have been ansformed to their
natural logarithms, the Probability Plot is consructed as before. The only difference is that the
natural logarithms of the observations are used on the x-axis. If the data are Lognormal, the
Probability Plot (on Normal probability paper) of the logarithms of the observations will

approximate 8 straight line.
Many statistical software packages for personal computers will construct Probability Plots

automatically with a simple command or two. If such software is available, there is no need to

conszuct Probability Plots by hand or to obtain special graph paper. The plot itself may be
generated somewhat differently than the method described above. In some packages, the observed

value is plonted as before on the x-axis. The y-axis, however, now represents the quantdle of the
Normal distribution (often referred to as the "Normal score of the observation™) corresponding to
the cumulative probability of the observed value. The y-coordinate is often computed by the

following formuia:

where ®~' denotes the inverse of the cumulative Normal distribution, n represents the sample size,
and i represents the rank position of the ith ordered concentration. Since the computer does these
calculations automasically, the formula does not have to be computed by hand.

EXAMPLE 1

Determine whether the following data set follows the Normal distribution by using a
Probability Plot ‘

00001<
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Nickel Concentraton (ppb)
Month Well 1 Well 2 Well 3 Well 4
1 58.8 19 39 3.1
2 1.0 81.5 151 942
3 262 331 27 85.6
4 56 14 21.4 10
5 8.7 64.4 578 637
SOLUTION
Step 1. List the measured nickel concentrations in order from lowest to highest.
Nickel
Concentration Order Probability Normal
(ppb) @) 100*(i/(n+1)) Quantile
1 1 5 -1.645
3.1 2 10 -1.28
8.7 3 14 -1.08
10 4 19 -0.88
14 5 24 -0.706
19 6 29 -0.55
214 7 33 -0.44
27 8 38 -0.305
39 9 43 -0.176
56 10 48 -0.05
58.8 11 52 0.05
64.4 12 57 0.176
81.5 13 62 0.305
85.6 14 67 0.44
151 15 71 0.55
262 16 76 0.706
331 17 81 0.88
578 18 86 1.08
637 19 90 1.28
20 95 1.645

942

Stcpz. The cumulative probability is given in the third column and is computed as 100*(i/(n+1))
where n is the total number of samples (n=20). The last column gives the Normal

quantiles corresponding to these probabilities.

If using special graph paper, plot the probability versus the concentration for each
sampie. Otherwise, plot the Normal quantile versus the concentration for each sample,
as in the plot below. The curvaure found in the Probability Plot indicates that there is
evidence of non-Normality in the dama.

Step 3.

000013
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PROBABILITY PLOT

NORMAL QUANTILES

1.1.3 Coefficient of Skewness

The Coefficient of Skewness (y;) indicates to what degree a data set is skewed or
asymmetric with respect to the mean. Dats from a Normal dismribution will have a Skewness
Cmﬁdmtofm,wﬁhmﬁcdmﬂhnapodﬁnampﬁwm&pmdingm
wmmadzﬁghx-aleﬁ-handnilofﬂzdisnibuﬁonislmgerand:l:inniathanmeopposin:mﬂ.

Since ground-water monitoring concentration data are inherently nonnegative, one often
expects the da to exhibit a certain degree of skewness. A small degree of skewness is not likely
to0 affect the results of statistical tests based on an assumption of Normality. However, if the
Skewness Coefficient is larger than 1 (in absolute vaiue) and the sample size is small (e.g., 1<25),
' smaristical research has shown that standard Normal theary-based tests are much less powerful than
when the absolute skewness is less than 1 (Gayen, 1949).

Calculating the Skewness Coefficient is useful and not much more difficult than compuring
the Coefficient of Variation. It provides a quick indication of whether the skewness is minimal
enwghmmemmanmmguysymmicmmnmemmm If the
aigmdm“mbiumhsmwmmnmmmmmam
approximation to the dam set. In that case, ) can be computed on the logarithms of the dara to st
for symmerry of the logged data.

- 000014
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The Skewness Coefficient may be computed using the following formula:

Ei(xi = i)’
(==Y or

where the numerator represents the average cubed residual and SD denotes the standard deviadon
of the measurements. Most statistics computer packages (¢.g., Minitab, GEO-EAS) will compute
the Skewness Coefficient a..omarcally via a simple command.

W=

EXAMPLE 2

Using the data in Example 1, compute the Skewness Coefficient to test for approximate
symmetry in the data.

SOLUTION
Step 1. Compute the mean, standard deviaton (SD), and average cubed residual for the nickel
concentragons: ' '
X =169.52 ppb
SD = 259.72 ppb

%Zi(xi -X)’ =2.98923*10"ppb’

Step 2.  Calculate the Coefficient of Skewness using the previous farmula to get yy=1.84. Since
the skewness is much larger than 1, the data appear o be significantly positively
skewed. Do not assume that the daza follow a Normal diswribution.

Step 3.  Since the original data evidence a high degree of skewness, one can attempt to compute
the Skewness Coefficient on the logged data instead. In that case, the skewness works

out o be mi= 024 < 1, indicaring that the logged data values are slightly skewed, but
not enough to reject an assumption of Normality in the logged data. In other words, the

ariginal data may be Lognormally

1.1.4 The Shapiro-Wilk Test of Normality (n<50)

The Shapiro-Wilk test is recommended as a superior alternative to the Chi-square test for
testing Normality of the data. It is based on the premise that if a set of data are Normally
distributed, the ordered values should be highly comrelated with corresponding quantiles taken from
a Normal diswribution (Shapiro and Wilk, 1965). In parmicular, the Shapiro-Wilk test gives

000015
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substantial weight to evidence of non-Normality in the tails of a diszibution, where the robustess
of statistical tests based on the Normality assumption is most severely affected. The Chi-square
test treats deparamres from Normality in the tails nearly the same as departures in the middle of a
distributon, and so is less sensitive to the types of nan-Normality that are most crucial. One
cannot tell from a significant Chi-square goodness-of-fit test what sort of non-Normality is

indicated

The Shapiro-Wilk test statistic (W) will tend 1o be large when a Probability Plot of the data
.adicates a nearly straight line. Only when the plotted data show significant bends or curves will
the test statstic be small. The Shapiro-Wilk test is considered to be one of the very best tests of

Normality available (Miller, 1986; Madansky, 1988)7

To calculate the test statistic W, one can use the following formula:

=[]

where the numerator is computed as
b= Zf.. By iot (Kiguiot) = X)) = Z:.. b,

In this last formuia, x(;) represents the jth smallest ordered value in the sample and
coefficients a; depend on the sample size n. The coefficients can be found for any sample size
from 3 up to 50 in Table A-1 of Appendix A. The value of k can be found as the greatest integer
less than or equai 10 0/2.

Normality of the data should be rejected if the Shapiro-Wilk statistic is too low when
compared to the critical values provided in Table A-2 of Appendix A. Otherwise one can assume
the data are approximately Normal for purposes of further statistical analysis. As before, it is
recommended that the test first be performed on the logarithms of the original data to test for
Lognormality. If the logged data indicate non-Narmality by the Shapiro-Wilk test, a re-test can be
performed on the original data to test for Narmality of the original concentrations.

EXAMPLE 3

Use the dan of Example 1 to compute the Shapiro-Wilk test of Normality.
: 000016
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SOLUTION
Step 1.  Order the data from smallest to largest and list, as in the following table. Also list the
dam in reverse order alongside the first column.
Step 2. Compute the differences X(n.i+1)-X(j) in column 3 of the wable by subtracting column 1
from column 2.
i X() X(neivl) X(n-i+1)~X(i) an-i+] bj
1 1.0 942.0 941.0 4734 44547
2 3.1 637.0 633.9 3211 203.55
3 8.7 578.0 569.3 2565 146.03
4 10.0 331.0 321.0 .2085 66.93
5 14.0 262.0 248.0 .1686 41.81
6 19.0 151.0 132.0 1334 17.61
7 21.4 85.6 64.2 1013 6.50
8 27.0 815 54.5 0711 3.87
9 39.0 64.4 254 0422 1.07

10 56.0 58.8 2.8 0140 004

11 58.8 56.0 -2.8 b=932.88

12 64.4 39.0 -254

13 81.5 27.0 -54.5

14 85.6 214 -642

15 151.0 19.0 -132.0

16 262.0 14.0 -248.0

17 331.0 10.0 -321.0

18 578.0 8.7 -569.3

19 637.0 3.1 -633.9

20 942.0 1.0 -941.0

Step 3.  Compute k as the greatest integer less than or equal to n/2. Since n=20, k=10 in this
example.

Step 4. Look up the coefficients a,.;,) from Table A-1 and list in column 4. Muldply the
differences in column 3 by the coefficients in column 4 and add the first k products w0
get quantity b. In this case, b=932.88.

Step 5. Compute the standard deviation of the sample, SD=259.72. Then

932.88
W= =0.679.
[259.72719]'
Step 6. mempnednheofW-O.Mﬁ)the5$aiﬁnlvahefa‘mphsiumin

Compare
Table A-2, namely W g5 20=0.905. Since W < 0.905, the sampie shows significant
evidence of non-Normality by the Shapiro-Wilk test. The dan should be ransformed
using namral logs and rechecked using the Shapiro-Wilk test before proceeding with

further staristical analysis (Actally, the logged dam should have been tested first. Bwb

0017
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original concentration data are used in this examplie to illusgate how the assumpdon of

Normality can be rejected.)

1.1.5 The Shapiro-Francia Test of Normality (n>50)

The Shapiro-Wilk test of Narmality can be used for sample sizes up to 50. When the sample
is larger than 50, a slight modification of the procedure called the Shapiro-Francia test (Shapiro and
Francia, 1972) can be used instead.

Like the Shapiro-Wilk test, the Shapiro-Francia test statistic (W*) will tend to be large when a
Probability Plot of the data indicates a nearly swaight line. Only when the plotted data show
significant bends or curves will the test statistic be small.

To calculate the test staristic W, one can use the following formula:

| 2imix(. l
W'= i)
(n-1)SD Zimi

where x;) represents the ith ordered value of the sample and where m; denotes the approximate
expected value of the ith ordered Normal quantile. The values for m; can be approximately

computed as

m =Q"(-i_-)
! n+l

where @1 denotes the inverse of the standard Normal distribution with zero mean and unit
variance. These values can be computed by hand using a Normal probability table or via simple
commands in many statistical computer packages.

Normality of the dam should be rejected if the Shapiro-Francia sttistic is too low when
compared to the critical values provided in Table A-3 of Appendix A. Otherwise one can assume
meunmappmmmmedfapmmof'mmﬁsﬁulmdyﬁ& As before, the
wmwummmamwwhm If these data indicate
mthyWhWanmmhmmuaiﬁmm
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1.1.6 The Probability Plot Correistion Coefficient

One other alternative test for Normality that is roughly equivalent to the Shapiro-Wilk and
Shapiro-Francia tests is the Probability Plot Correlation Coefficient test described by Filliben
(1975). This twest fits in perfectly with the use of Probability Plots, because the essence of the test
is 10 compute the common correlation coefficient for points on a Probability Plot. Since the
carrelation coefficient is a measure of the linearity of the points on a scanerplot, the Probability Plot
Correlation Coefficient, like the Shapiro-Wilk test, will be high when the plotted points fall along a
straight line and low when there are significant bends and curves in the Probability Plot.
Comparison of the Shapiro-Wilk and Probability Plot Correlation Coefficient tests has indicated
very similar smtistical power for detecting non-Normality (Ryan and Joiner, 1976).

The construction of the test statistic is somewhat different from the Shapiro-Wilk W, but not
difficult 1o implement. Also, tabied critical values for the correlation coefficient have been derived
for sample sizes up to n=100 (and are reproduced in Table A-4 of Appendix A). The Probability
Plot Carrelarion Coefficient may be computed as

> XM, -nXM
r=
C, x n-1

where X(;) represents the ith smallest ardered concentration value, M; is the median of the ith order
statistic from a standard Normal distribution, and X and M represent the average values of X
and M(j). The ith Normal order statistic median may be spproximated as Mj=®~1(m;), where as
before, @1 is the inverse of the standard Normal cumulative distribution and mj can be computed
as follows (given sampie size n):

1-(.5Ys fori=1
m, =4{(i-.3175)/(n+.365) forl<i<n
(.5V* fori=n

Quantdry C, represents the square root of the sum of squares of the Mj's minus n times the average

value M, that is |
C,={I M - M
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When working with a complete sample (i.., containing no nondetects or censored values), the
average value M=0, and so the formula for the Probability Plot Carrelation Coefficient simplifies

e XM,
Y M? xSDvn-1

o

EXAMPLE 4

Use the dam of Example 1 to compute the Probability Plot Carrelation Coefficient west.

SOLUTION
Order the data from smallest to largest and list, as in the following table.

Step 1.
Step 2.

Step 3.

Compute the quantities m;
order statstic medians, M;, in

to column 2.

from Filliben's formuia above for each i in column 2 and the
column 3 by applying the inverse Normal ransformaton

Since this sample contains no nondetects, the simplified formula for r may be used.
Compute the products X(j)*Mi in column 4 and sum to get the numerator of the

correlation coefficient (equal to 3,836.81 in this case). Also compute M;2 in column 5

and sum to find quantity Cq2w17.12.

i X m; M; Xo*M; M2
1 1.0 03406 -1.8242 -1.824 3.328
2 3.1 08262 -1.3877 -4.302 1.926
3 8.7 13172 -1.1183 -9.729 1.251
4 10.0 .18082 09122 9.122 0.832
5 14.0 22993 -0.7391 -10.347 0.546
6 19.0 27903 -0.5857 -11.129 0.343
7 21.4 32814 -0.4451 -9.524 0.198
8 27.0 37724 03127 -8.444 0.098
9 39.0 42634 -0.1857 -7.242 0.034
10 56.0 47545 -0.0616 -3.448 0.004
11 58.8 52455 0.0616 3.621 0.004
12 64.4 57366 0.1857 11.959 0.034
13 81.5 62276 0.3127 25.488 0.098
14 85.6 67186 0.4451 38.097 0.198
15 151.0 72097 0.5857 88.445 0.343
16 262.0 77007 0.7391 193.638 0.546
17 331.0 81918 0912  301.953 0.832
18 578.0 .86828 1.1183 646.376 1.251
19 637.0 91738 1.3877 883.941 1.926
20 942.0 96594 1.8242 1718.408 3.328

0G00<0
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Step 4. Compute the Probabiliry Plot Correladon Coefficient using the simplified formuia forr.
where SD=259.72 and C=4.1375, to get

r= 3836.81
(4.1375)(259.72)V19

Step 5. Compare the computed value of r=0.819 to the 5% critcal value for sample size 20 in
Table A-4, namely R gs520=0.950. Since r < 0.950, the sampie shows significant
evidence of non-Normality by the Probability Plot Correlation Coefficient test. The dama
should be transformed using natural logs and the correlation coefficient recalculated

befare proceeding with further statistcal analysis.

=0.819

EXAMPLE §

The dam in Examples 1. 2, 3, and 4 showed significant evidence of non-Normality. Instead
of first logging the concentrations before testing for Normality, the original data were used. This
was done to illustrate why the Lognormal disibution is usually a better default model than the
Normal In this exampie, use the same data w0 determine whether the measurements benter follow a

Lognormal distributgon.

Computing the nawral logarithms of the data gives the table below.

Logged Nickel Concentrations log (ppb)
Month Well 1 Well 2 Well 3 Well 4
1 4.07 2.94 3.66 1.13
2 0.00 4.40 5.02 6.85
3 5.57 " 5.80 3.30 4.45
4 4.03 2.64 3.06 2.30
5 2.16 4.17 6.36 6.46
SOLUTION

Method 1. Probability Plots

Step 1. gn&n@lmmsdwmmmmmmmmm
g
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Log Nickel

Order Concentration Probability Normal

@) log(ppb) 100*(/(n+1)) Quanidiles

1 0.00 5 -1.645

2 1.13 10 -1.28

3 2.16 14 -1.08

4 2.30 19 -0.88

5 2.64 24 -0.706

6 2.94 29 -0.55

7 3.06 33 -0.44

8 3.30 38 -0.305

9 3.66 43 -0.176
10 4.03 48 -0.05
11 4.07 52 0.05
12 4.17 57 0.176
13 4.40 62 0.305 -
14 4.45 67 0.44
15 5.02 71 0.55
16 5.57 76 0.706
17 5.80 81 0.88
18 6.36 86 1.08
19 6.46 90 1.28
20 6.85 95 1.645

Step 3.

Compute the probability as shown in the third column by calculating 100*(i/n+1), where
pi:;lhemt:l number of samples (n=20). The corresponding Normal quantles are given
in column 4.

Plot the Normal quantiles against the nanral logarithms of the observed conceatrations
to get the following graph. The plot indicates a nearly straight line fit (verified by
calculation of the Correlation Coefficient given in Method 4). There is no substantial
evidence that the data do not follow a Lognormal distribution. The Normal-theory
procedure(s) should be performed on the log-transfarmed data. :
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Method 3. Shapiro-Wilk Test

Step 1.  Order the logged data from smallest to largest and list, as in following table. Also list
the dam in reverse order and compute the differences x(p i, 1)-X(j)-

i LN(x)) LN(x(n-ie1)) an-i+1 bi
1 0.00 6.85 4734 3.24
2 1.13 6.46 3211 : 1.71
3 2.16 6.36 2565 1.08
4 2.30 5.80 .2085 0.73
5 2.64 5.57 .1686 0.49
6 2.94 5.02 .1334 0.28
7 3.06 4.45 1013 0.14
8 3.30 4.40 .0711 0.08
9 3.66 4.17 .0422 0.02

10 4.03 4.07 .0140

11 4.07 4.03 b=7.77

12 4.17 3.66

13 4.40 3.30

14 4.45 3.06

15 5.02 2.94

16 5.57 2.64

17 5.80 2.30

18 6.36 2.16

19 6.46 1.13

20 6.85 0.00

Step 2. Compute k=10, since n/2=10. Look up the coefficients a,.;,; from Table A-1 and
multiply by the first k differences between columns 2 and 1 10 get the quanudes b;. Add
these 10 products to get b=7.77.

Step 3. Compute the standard deviation of the logged data, SD=1.8014. Then the Shapiro-Wilk
stansuc is given by

1.7
W= =0.979.
[L801n19

Step 4. Compare the computed value of W to the 5% critical vaiue for sample size 20 in Table A-
2, namely W 0520=0.905. Since W=0.979>0.905, the sampile shows no significant
evidence of non-Normality by the Shapiro-Wilk test. Proceed with further starstical
analysis using the log-transformed dam.

Method 4. Probability Plot Correlation Coefficient
1. Orderthe dara from smallest and list below. |
Step fogg=d L 660023
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PROBABILITY PLOT

NORMAL QUANTILES

Method 2. Coefficient of Skewness

Step 1.

Step 2.

Step 3.
Step 4.

Calculate the mean, SD, and average cubed residuals of the natural logarithms of the
dara

X =3.918 log(ppb)
SD = L802 log(ppb)

%z,(x, ~ %)’ =-1325 log*(ppb)

Calculate the Skewness Coefficient, 7,

n= _11.325 ==0.244
(.95)3(L802)°

Compute the absolute value of the skewness, ty)l=i-0.2441=0.244.
Since the absolute value of the Skewness Coefficient is less than 1, the data do not show

evidence of significant skewness. A Normal approximation to the log-transformed data
may therefore be appropriate, but this model should be further checked.

060024



Log Nickel
Order Concentragon ) , ENA.

)  log(ppb) m M; X@)™M; M2
1 0.00 .03406 -1.8242 0.000 3.328
2 1.13 .08262 -1.3877 -1.568 1.926
3 2:.16 13172 . -1.1183 -2.416 1.251
4 2.30 .18082 -0.9122 -2.098 0.832
5 2.64 .22993 -0.7391 -1.951 0.546
6 2.94 .27903 -0.5857 -1.722 0.343
7 3.06 32814 -0.4451 -1.362 0.198
8 3.30 37724 -0.3127 -1.032 0.098

-9 3.66 42634 -0.1857 <0.680 0.034

10 4.03 47545 -0.0616 -0.248 0.004

11 4.07 52455 0.0616 0.251 0.004

12 4.17 57366 0.1857 0.774 0.034

13 4.40 .62276 0.3127 1.376 0.098

14 4.45 67186 0.4451 1.981 0.198

15 5.02 72097 0.5857 2.940 0.343

16 5.57 .77007 0.7391 4.117 0.546

17 5.80 .81918 09122 5.291 0.832

18 6.36 .86828 1.1183 7.112 1.251

19 6.46 91738 1.3877 8.965 1.926

20 6.85 96594 1.8242 12.496 3.328

Step 2. Compute the quantities m; and the order statistic medians M;, according to the procedure

Step 3.

Step 4.

in Example 4 (note that these values depend only on the sample size and are identcal ©o
the quannites in Exampie 4).

Compute the products X(j)*M; in column 4 and sum to get the numerator of the
correlation coefficient (equai to 32.226 in this case). Also compute M;2 in column 5 and
sum to find quantity CqZw17.12.

Compute the Probability Plot Carrelation Coefficient using the simplified formula forr,
where SD=1.8025 and C;=4.1375, 10 get

r= 32.226
(4.1375XL8025)V19
Compare the computed value of r=0.991 to the 5% critical value for sample size 20 in
Table A-4,-namely R 05 20%0.950. Since r > 0.950, the logged dara show no significant

evidence of non-Normality by the Probability Plot Correlation Coefficient test.
Therefore, Lognormality of the original data could be assumed in subsequent statistical
procedures. '

=(0.991

0600235
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1.2 TESTING FOR HOMOGENEITY OF VARIANCE

One of the most important assumptions for the parametric analysis of variance (ANOVA) is
that the different groups (e.g.. different wells) have approximately the same variance. If this is not
the case, the power of the F-test (its ability to detect differences among the group means) is
reduced. Mild differences in variance are not too bad. The effect becomes noticeable when the
largest and smallest group variances differ by a ratio of about 4 and becomes quite severe when the
ratio is 10 or more (Milliken and Johnson, 1984).

The procedure suggested in the EPA guidance document, Bartlett's test, is one way to test
whether the sampie data give evidence that the well groups have different variances. However,
Bartlett's test is sensitive to non-Normality in the data and may give misieading results uniess one
knows in advance that the data are approximately Normal (Milliken and Johnson, 1984). As an
aiternative to Bartlernt's test, two procedures for testing homogeneity of the variances are described
below that are less sensitive o non-Normality.

1.2.1 Box Plots

Box Plots were first developed for exploratory data analysis as a quick way to visualize the
"spread” or dispersion within a data set. In the context of variance testing, one can construct 2 Box
Plot for each well group and compare the boxes to see if the assumption of equal variances is
reasonable. Such a comparison is not a formal test procedure, but is easier to perform and is often
sufficient for checking the group variance assumption.

The idea behind a Box Plot is to order the data from lowest to highest and to trim off 25
percent of the observations on either end, leaving just the middle 50 percent of the sample values.
The spread between the lowest and highest values of this middle SO percent (known as the
interquartile range or IQR) is represented by the length of the box. The very middie observation
(i.e., the median) can also be shown as a line cutting the box in two.

To construct a Box Plot, calculate the median and upper and lower quantiles of the data set
(respectively, the 50th, 25th, and 75th percentiles). To do this, calculate ksp(n+1)/100 where
n=number of samples and p=percentile of interest. If k is an integer, let the kth ordered or ranked
value be an estimate of the pth percentile of the data. If k is not an integer, let the pth percentile be
equal to the average of the two values closest in rank position to k. For example, if the data set
consists of the 10 values (1, 4, 6.2, 10, 15, 17.1, 18, 22, 25, 30.5), the position of the median
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would be found as 50*(10+1)/100=5.5. The median would then be computed as the average of
the 5th and 6th ordered values, or (15+17.1)/2=16.05.

Likewise, the positon of the lower quartle would be 25%(10+1)/100=2.75. Calculate the
average of the 2nd and 3rd ordered observations to esamate this percendle, i.c., (4+6.2)/2=5.1.
Since the upper quartile is found to be 23.5, the length of Box Plot would be the difference
berween the upper and lower quartles, ar (23.5-5.1)=18.4. The box itself should be drawn on a
graph with the y-axis representing concentration and the x-axis denoting the wells being pioned.
Three horizontal lines are drawn for each well, one line each at the lower and upper quartiles and
another at the median concentration. Vertical connecting lines are drawn to complete the box.

Most statistics packages can directly calculate the statistics needed to draw a Box Plot, and
many will construct the Box Plots as well. In some computer packages, the Box Plot will also
have two "whiskers" extending from the edges of the box. These lines indicate the positions of
extreme values in the data set, but generally should not be used to approximate the overall

dispersion.

If the box length for each group is less than 3 times the length of the shortest box, the sample
variances are probably close enough to assume equal group variances. If, however, the box length
for any group is at least wiple the length of the box for another group, the variances may be
significantly different (Kirk Cameron, SAIC, personal communication). In that case, the data
should be further checked using Levene’s test described in the following section. If Levene’s test
is significant, the data may need to be ransformed or 2 non-parametric rank procedure considered

before proceeding with further analysis.
EXAMPLE 6
Construct Box Plots for each well group to test for equality of variances.

. Arsenic Concentration (ppm)
Month Well ] - Well 2 Well 3 Well 4 Well § Well 6
1 2.9 2.0 2.0 7.84 24.9 0.34
2 3.09 125 1094 9.3 1.3 4.78
3 38.7 7.8 45 259 0.75 2.85
4 4.18 52 2.5 2.0 7 1.2
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SOLUTION

Step 1. Compute the 25th, 50th, and 75th percentiles for the data in each well group. To
calculate the pth percentile by hand, order the data from lowest to highest. Calculate
p*(n+1)/100 to find the ordered position of the pth percentile. If necessary, interpolate
berween sample values to estimate the desired percentile.

Step 2.  Using well 1 as an exampie, n+1=5 (since there are 4 data values). To calculate the 25th
percentle, compute its ordered position (i.e., rank) as 25*5/100=1.25. Average the 1st
and 2nd ranked values at well 1 (i.e., 3.09 and 4.18) to find an estimated lower quartile
of 3.64. This estimate gives the lower end of the Box Plot. The upper end or 75th

tile can be computed similarly as the average of the 3rd and 4th ranked values, or
(22.9+35.7)/2=29.3. The median is the average of the 2nd and 3rd ranked values,

giving an estmate of 13.14.
Step 3.  Construct Box Plots for each well group, lined up side by side on the same axes.

BOX PLOTS OF WELL DATA
m { 1 L L L i
100 P~ -
E =3 -
€ ot i
z
=] 8 N
=
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S 0 .
0 LT )
g | T a .
‘ - -
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1 2 3 4 ) 6
WELL

Step 4.  Since the box length for well 3 is more than three times the box lengths for wells 4 and
6, there is evidence that the group variances may be significantly different. These dat
shouid be further checked using Levene's test described in the next section.

0G00<8
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1.2.2 Levene's Test

Levene's test is a more formal procedure than Box Plots for testing homogeneity of variance
that, unlike Bartlett's test, is not seasidve to non-Normality in the data. Levene's test has been
shown to have power neariy as great as Bartlett's test for Normally dismibuted data and power

superior to Bartiett's for non-Normal dara (Milliken and Johnson, 1984).

To conduct Levene's test, first compute the new variables

2, =[xy =%

where x;; represents the jth value from the ith well and X; is the ith well mean. The values z;;

represent the absolute values of the usual residuals. Then run a standard one-way analysis of
variance (ANOVA) on the variables z;;. If the F-test is significant, reject the hypothesis of equal
group variances. Otherwise, proceed with analysis of the x;;'s as initially planned.

EXAMPLE 7
Use the data from Example 6 to conduct Levene's test of equal variances.

SOLUTION

Step 1. Calmhmﬂc@mpmemfmeachweu(ii)

Well 1 mean = 16.47 Well4 mean = 11.26
Well 2 mean = 15.76 Well 5§ mean = 13.49
Well 3 mean = 29.60 Well 6 mean = 2.29

0G00<9



Draft 128093 7284

Step 2. Compute the absolute residuals 2jj in each well and the well means of the residuals (Z;).

Absolute Residuais
Moath Well ] Well 2 Well 3 Well 4 Well § Well 6
1 6.43 13.76 27.6 3.42 11.4] 1.95
2 13.38 14.51 79.8 1.96 12.19 2.49
3 19.23 7.96 25.1 14.64 12.74 0.56
4 12.29 36.24 27.1 9.26 13.51 1.09
Well
Mean (Z;) = 12.83 18.12 39.9 7.32 12.46 1.52
Overall

Mean(Z) =15.36

Step 3. Compute the sums of squares for the absolute residuais.
SSrora = (N-1) SDZ? = 6300.89
SSwmus = 20 % — NZ¥ =3522.90
SSmace = SSrora=SSwaus = 2777.99

Step 4. Constuct an analysis of variance bie 1o calculate the F-statistic. The degrees of
freedom (df) are computed as (#groups—1)=(6~1)=5 df and (#samples—#groups)=(24~

6)=18 df.
ANOVA Table
Source Sum-of-Squares daf Mean-Square F-Ratio P
Between Wells 3522.90 5 704.58 4.56 0.007
Ermor 2777.99 18 154.33
Towl ' 6300.89 23

Step 5.  Since the F-statistic of 4.56 exceeds the tabulated value of F gs=2.77 with 5 and 18 df,
the assumprion of equal variances should be rejected. Since the original concentration
data are used in this exampie, the data should be logged and retested.

R - 060030
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2. RECOMMENDATIONS FOR HANDLING
NONDETECTS

The basic recommendations within the Interim Final Guidance for handling nondetect
analyses include the following (see p. 8-2): 1) if less than 15 percent of all samples are nondetect,
replace each nondetect by half its detection or quandtadon limit and proceed with a parametric .
analysis, such as ANOVA, Tolerance Limits, or Prediction Limits; 2) if the percent of nondetects is
berween 15 and 50, either use Cohen's adjustment to the sample mean and variance in order to
proceed with a parametric analysis, or employ 2 non-parametric procedure by using the ranks of
the observations and by treating all nondetects as tied values; 3) if the percent of nondetects is
greater than SO percent, use the Test of Proportions.

As 10 the first recommendation, experience at EPA and research at the United States
Geological Survey (USGS, Dennis Helsel, personal communication, 1991) has indicated that if
less than 15 percent of the samples are nondetect, the results of parametric statistical tests will not
be substandally affected if nondetects are replaced by half their detection limits. When more than
15 percent of the samples are nondetect, however, the handling of nondetects is more crucial to the
outcome of staristical procedures. Indeed, simple substitution methods tend to perform poorly in
statistical tests when the nondetect percentage is substantal (Gilliom and Helsel, 1986).

Even with a small proportion of nondetects, however, care should be taken when choosing
between the method detection limit (MDL) and the practical quandtation limit (PQL) in
characterizing “nondetect” concentrations. Many nondetects are characterized by analytical
laboratories with one of three dat qualifier flags: "U,"” “1," or "E." Samples with a "U" dana
qualifier represent "undetected” measurements, meaning that the signal characteristic of that analyte
could not be observed or distinguished from "background noise” during lab analysis. Inorganic
samples with an "E" flag and organic samples with a "J” flag may or may not be repored with an
estimared concentration. If no concentration is estimated, these samples represent "detected but not
quantified” measurements. In this case, the actual concentration is assumed to be positive, but
somewhere between zero and the PQL. Since all of these non-detects may or may not have actual
positive concentrations between zero and the PQL, the suggested substitution for parametric
staristical procedures is to replace each nondetect by one-half the PQL (note, however, that "E” and
"J" samplies reported with estimated concentrations should be reated, for staristical purposes, as
valid measurements. Substinution of one-half the PQL is pot recommended for these samples). -,
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In no case should nondetect concentrations be assumed to be bounded above by the MDL.
The MDL is estumated on the basis of ideal laboratory conditions with ideal analyte samples and
does not account for matrix or other interferences encountered when analyzing specific, actual field
samples. For this reason, the PQL should be taken as the most reasonable upper bound for

nondetect concenwations.

It should also be noted that the disunction between “undetected” and *“‘detected but not
quantified” measurements has more specific implications for rank-based non-parametric
procedures. Rather than assigning the same tied rank to all nondetects (see below and in Section
3), “detected but not quantified” measurements should be given larger ranks than those assigned to
“undetected” samples. In fact the two types of nondetects should be wreated as two distings groups
of tied observatons for use in the Wilcoxon and Kruskal-Wallis non-parametric procedures.

2.1 NONDETECTS IN ANOVA PROCEDURES

For a moderate 10 large percentage of nondetects (i.e., over 15%), the handling of nondetects
should vary depending on the statistical procedure to be run. If background dara from one or more
upgradient wells are to be compared simultaneously with samples from one or more downgradient
wells via a t-test or ANOVA type procedure, the simplest and most reliable recommendation is to
switch to a non-parametric analysis. The distributional assumptions for parameric procedures can
be rather difficult to check when a substannal fraction of nondetects exists. Furthermore, the non-
parametric alternatives described in Section 3 tend to be efficient at detecting contamination when
the underlying data are Normally distributed, and are often more powerful than the parametric
methods when the underlying data do not follow 2 Normal distribution.

Nondetects are handled easily in a nonparametric analysis. All dam values are first ordered
and replaced by their ranks. Nondetects are teated as tied values and replaced by their midranks
(see Section 3). Then a Wilcoxon Rank-Sum or Kruskal-Wallis test is run on the ranked data
depending on whether one or more than one downgradient well is being tested.

The Test of Proportions is not recommended in this Addendum, even if the percentage of
nondetects is over 50 percent. Instead, for all two-group comparisons that involve more than 15
percent nondetects, the non-paramegic Wilcoxon Rank-Sum procedure is recommended.
Although acceptable as a sutistical procedure, the Test of Proportions does not account for
pocentially different magnitudes among the concentrations of detected values. Rather, each sampie
ismmduaOmld:pendingmwhethathemmmedwneenmﬁmisbe{oworaboveme
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detecton limit. The Test of Proportions ignares information about concentrauon magnitudes, and
hence is usually less powerful than a non-paramewic rank-based test like the Wilcaxon Rank-Sum,
even after adjusting for a large fraction of tied observadons (e.g., nondetects). This is because the
ranks of a damset preserve additional informarion about the relative magnitudes of the concentrarion
values, informartion which is lost when all observatons are scored as O's and 1's.

Another drawback to the Test of Proportions, as presented in the Interim Final Guidance, 1s
that the procedure relies on a Normal probability approximation to the Binomial disaibution of 0's
and 1's. This approximation is recommended only when the quantities n x (%NDs) and n x (1~
%NDs) are no smaller than 5. If the percentage of nondetects is quite high and/or the sampie size
is fairly small, these conditions may be violated, leading potentally to inaccurate resuits.

Comparison of the Test of Proportions to the Wilcoxon Rank-Sum test shows that for small
to moderate proportions of nondetects (say O to 60 percent), the Wilcoxon Rank-Sum procedure
adjusted for ties is more powerful in identifying real concentration differences than the Test of
Proportions. When the percentage of nondetects is quite high (at least 70 to 75 percent), the Test
of Proportions appears to be slightly more powerful in some cases than the Wilcoxon, but the
results of the two tests almost always lead to the same conclusion, so it makes sense to simply
recommend the Wilcoxon Rank-Sum test in all cases where nondetects constitute more than 15

percent of the samples.
2.2 NONDETECTS IN STATISTICAL INTERVALS

If the chosen method is a statistical interval (Confidence, Tolerance or Prediction limit) used
to compare background dam against each downgradient well separately, mare options are available
for handling moderate proportons of nondetects. The basis of any parametric statistical interval
limit is the formula X £ x-s, where X and s represent the sampie mean and standard deviation of
the (background) data and x depends on the interval type and characteristics of the monitoring
network. To use a paramerric interval in the presence of a substantial number of nondetects, it is
necessary 1o estimate the sample mean and standard deviation. But since nondetect concentrations
are unknown, simple formulas for the mean and standard deviation cannot be computed directly.
Two basic approaches to estimating or "adjusting” the mean and sandard deviation in this simarion
have been described by Cohen (1959) and Aitchison (1955).

The underlying assumptions of these procedures are somewhat different. Cohen's
adjustment (which is described in detail on pp. 8-7 to 8-11 of the Interim Final Guidance) assumes
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that all the dara (detects and nondetects) come from the same Normal or Lognormal population, but

that nondetect values have been “"censored” at their detection limits. This implies that the
contaminant of concem is present in nondetect samples, but the analydcal equipment is not
sensitive to concentrations lower than the detection limit. Aitchison's adjustment, on the other
hand. is consrructed on the assumption that nondetect samples are free of contamination, so that all
nondetects may be regarded as zero concentratons. In some situations, particularly when the
analyte of concemn has been detected infrequently in background measurements, this assumption

may be practical, even if it cannot be verified directly.

Before choosing between Cohen's and Aitchison's approaches, it should be cautioned that
Cohen's adjustment may not give valid results if the proportion of nondetects exceeds 50%. In a
case study by McNichols and Davis (1988), the false positive rate associated with the use of t-tests
based on Cohen's method rose substantially when the fraction of nondetects was greater than 50%.
This occurred because the adjusted estimates of the mean and standard deviation are more highly
correlated as the percentage of nondetects increases, leading to less reliable statistical tests
(including staristical interval tests).

On the other hand, with less than 50% nondetects, Cohen's method performed adequately in
the McNichols and Davis case study, provided the data were not overly skewed and that mare
extensive tables than those included within the Interim Final Guidance were available to calculate
Cohen's adjusunent parameter. As a remedy t0 the laner caveat, a more extensive table of Cohen's
adjustnent parameter is provided in Appendix A (Table A-5). It is also recommended that the dan
(detected measurements and nondetect detection limits) first be log-transformed prior 10 computing
- cither Cohen's or Aitchison's adjusunent, especially since both procedures assume that the
underiying data are Normally dismributed.

2.2.1 Censored and Detects-Only Probability Plots

To decide which approach is more appropriate for 2 particular set of ground water data, two
separate Probability Plots can be constructed. The first is called a Censored Probability Plot and is
a test of Cohen's underlying assumption. In this method, the combined set of detects and
nondetects is ordered (with nondetects being given arbitrary but distinct ranks). Cumulative
probabilities or Normal quantiies (see Section L.1) are then computed for the data set as in a
regular Probability Plot. However, only the dewected vaiues and their associated Normal quantiles
are actually piotted. If the shape of the Censored Probability Plot is reasonably linear, then
Cohen's assumption that nondetects have been “censored” at their detection limit is probably
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acceptable and Cohen's adjusmment can be made to estimate the sample mean and standard
deviarion. If the Censored Probability Plot has significant bends and curves, particularly in one or

both tails, one might consider Aitchison's procedure instead.

To test the assumptions of Aitchison’s method, a Detects-Only Probability Plot may be
constucted. In this case, nondetects are completely ignored and a standard Probability Plot is
constructed using gnly the detected measurements. Thus, cumuiative probabilities or Normal
quantiles are computed only for the ordered detected values. Comparison of a Detects-Only
Probability Plot with a Censored Probability Plot will indicate that the same number of points and
concenmaton values are plotted on each graph. However, different Normal quantiles are
associated with each detected concentration. If the Detects-Only Probability Plot is reasonably
linear, then the assumptions-underlying Aitchison's adjustment (i.c., that "nondetects” represent
Ze10 concentratons, and that detects and nondetects follow separate probability distributions) are
probably reasonable.

If it is not clear which of the Censored or Detects-Only Probability Plots is more linear,
Probability Plot Carrelation Coefficients can be computed for both approaches (note that the
correlarions should only involve the points actually plotted, that is, detected concentrations). The
plot with the higher correlation coefficient will represent the most linear trend. Be careful,
however, 10 use other, non-statistical judgments to help decide which of Coben's and Aitchison's
underiying assumptions appears to be most reasonable based on the specific characteristics of the
data set. It is also likely that these Probability Plots may have to be constructed on the logarithms
¢ the data instead of the original values, if in fact the most appropriate underlying distribution is
the Lognormal instead of the Normal,

EXAMPLE 8

Create Censored and Detects-Only Probability Plots with the following zinc dam to determune
whether Cohen's adjustment or Aitchison's adjustment is most appropriate for estimating the gue
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Zinc Concentragons (ppb) at Background Wells
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Sampie Well 1 Well 2 Well 3 Well 4 Well §
1 <7 <7 K3 11.69 <7
2 11.41 <7 12.85 10.90 <?
3 <7 13.70 14.20 <7 <7
4 <7 11.56 9.36 12.22 11.15
5 <7 <7 <7 11.05 13.31
6 10.00 <? 12.00 <7 12.35
7 15.00 10.50 <7 13.24 <7
8 <7 12.59 <7 <7 8.74

SOLUTION

Step 1. Pool together the data from the five background wells and list in order in the table
below.

Step 2. To construct the Censared Probability Plot, compute the probabilities i/(n+1) using the
combined set of detects and nondetects, as in column 3. Find the Normal quantiles
associated with these probabilities by applying the inverse standard Normal
transformation, 1.

Step 3.  To construct the Detects-Only Probability Plot, compute the probabilities in column 5

using only the detected zinc values. Again apply the inverse standard Normal
transformation to find the associated Normal quantiles in column 6. Note that
nondetects are ignored completely in this method.
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Order (i) Zinc Conc.  Censored Nomal  Detects-Only ~ Normal

(ppb) Probs. Quaniiles Probs. Quantiles

<7 024 -1.971

T .

2 <7 .049 -1.657

3 <7 .073 -1.453

4 <7 .098 -1.296

5 <7 122 -1.165

6 <7 .146 -1.052

7 <7 171 -0.951

8 <7 .195 -0.859

9 <7 220 -0.774
10 <7 244 -0.694
11 <7 268 -0.618
12 <7 293 -0.546
13 <7 317 -0.476
14 <7 341 -0.408
15 <7 .366 -0.343
16 <7 .390 -0.279
17 <7 415 -0.216
18 <7 439 -0.153
19 <7 463 -0.092
20 <7 488 -0.031
21 8.74 512 0.031 .048 -1.668
22 9.36 537 0.092 095 © -1.309
23 10.00 561 0.153 .143 -1.068
24 10.50 585 0.216 .190 -0.876
25 10.90 . .610 0.279 238 -0.712
26 11.05 .634 0.343 286 -0.566
27 11.15 .659 0.408 333 -0.431
28 11.41 .683 0.476 381 -0.303
29 11.56 .707 0.546 429 -0.180
30 11.69 732 0.618 476 -0.060
31 12.00 756 0.694 524 0.060
32 12.22 .780 0.774 571 0.180
33 12.35 .805 0.859 619 0.303
34 12.59 .829 0.951 667 0.431
35 12.85 .854 1.052 714 0.566
36 13.24 878 1.165 762 0.712
37 13.31 902 1.296 810 0.876
38 13.70 927 1.453 857 1.068
39 14.20 951 1.657 905 1.309
40 15.00 976 1.971 952 1.668

Siep 4. Plot the detected zinc concentrazions versus each set of probabilities or Normal quaniles,

as per the procedure for constructing Probability Plots (see figures below). The
nondetect values should not be ploned. As can be seen from the graphs, the Censored
Probability Plot indicates a definite curvature in the tails, especially the lower til. The
Detects-Only Probability Plot, however, is reasonably linear. This visual impression is
bolstered by calculation of a Probability Plot ComhtionCoeﬁciemforeachﬁtOoé 037
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detected values: the Censored Probability Plot has a correlation of r=.969, whiie the
Detects-Only Probability Plot has a correladon of r=.998.

Because the Detects-Only Probability Plot is substantially more linear than the Censored
Probability Plot, it may be appropriate to consider detects and nondetects as arising from
sutistically distinct disgibutions, with nondetects representing "zero" concentrations.
Therefore, Aitchison's adjustment may lead to better estimates of the que mean and
standard deviation than Cohen's adjustment for censored data. '

CENSORED PROBABILITY PLOT
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2.2.2 Aitchison's Adjustment

To actually compute Aitchison's adjustment (Aitchison, 1955), it is assumed that the detected
sampies follow an underlying Normal diszibution. If the detects are Lognormal, compute
Airchison's adjustment on the logarithms of the data instead. Let d=# nondetects and let n=total #
of samples (detects and nondetects combined). Then if X° and s” denote respectively the sample
mean and standard deviation of the detected values, the adjusted overall mean can be estimated as

(-2

and the adjusted overall standard deviation may be estimated as the square root of the quantry
n- (d+l) &) ( )(_.z
0= — )

The general formula for a parametric sta=stical interval adjusted for nondetects by Aitchison's
method is given by 4 £ X- &, with x depending on the type of interval being constructed.
060039
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EXAMPLE 9 T

In Example 8, it was determined that Aitchison's adjustment might lead to more appropriate
estmates of the ue mean and standard deviation than Cohen's adjustment. Use the data in

Examplie 8 to compute Aitchison's adjustment

SOLUTION

Step 1. The zinc data consists of 20 nondetects and 20 detected values; therefore d=20 and n=40
in the above formulas.

Swep 2.  Compute the average X’ =11.891 and the standard deviation s” =1.595 of the set of
detected values. .

Step 3.  Use the formulas for Aitchison's adjustment to compute estmates of the true mean and
standard deviagon:

) 20
=(1-22)x11.891=5.95
”( 40)’<

- 40-21 3 (20 20)( 3 -
& ( T )(l 595)° + 39 11.891) 5= c 1

If Cohen's adjustment is mistakenly computed on these data instead, with a detection

limit of 7 ppb.the estimates become 4 = 7.63 and G = 4.83, Thus, the choice of
adjustment can have a significant impact on the upper limits computed for statistical

2.2.3 More Than 50% Ngndetects

If more than 50% but less than 90% of the sampies are nondetect or the assumptions of
Cahen's and Aitchison's methods cannot be justified, parametric statistical intervals shouid be
abandoned in favor of non-parametric alternatives (see Section 3 below). Nonparametric
statistical intervals are easy to construct and apply to ground water data measurements, and no
special steps need be taken to handie nondetects.

When 90% or more of the data values are nondetect (as often occurs when measuring volarile
arganic compounds [VOCs] in ground water, for instance), the detected samples can often be
modeled as "rare events” by using the Poisson distribution. The Poisson model describes the
behavior of a series of independent events over a large number of trials, where the probability of
occurrence is lJow but stays constant from trial to ial. The Poisson model is similar t0 the
Binomial model in that both models represent “counting processes.” In the Binomial case,
nondetects are counted as ‘misses’ or zeroes and detects are counted (regardiess of contaminanon
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level) as ‘hits' or ones; in the case of the Poisson, each particle or molecule of contaminaaon is

counted separately but cumulatively, so that the counts for detected samples with high
concentrations are larger than counts for samples with smaller concentrations. As Gibbons (1987,

p. 574) has noted. it can be postulated

...that the number of molecules of a particular compound out of a2 much larger
number of molecules of water is the result of a Poisson process. For exampie,
we might consider 12 ppb of benzene to represent a count of 12 units of benzene
for every billion units examined. In this context, Poisson's approach is justfied
in that the number of units (i.c., molecules) is large, and the probability of the
occurrence (i.e., a molecule being classified as benzene) is smail.

For a detect with concentration of 50 ppb, the Poisson count would be 50. Counts for
nondetects can be taken as 2210 or perhaps equal to half the detection limit (e.g., if the detecuon
limit were 10 ppb, the Poisson count for that sample would be 5). Unlike the Binomial (Test of
Proportions) model, the Poisson model has the ability to utilize the magnitudes of detected
concentratons in statstcal tests.

The Poisson distribution is governed by the average rate of occurrence, A, which can be
estimated by summing the Poisson counts of all sampies in the background pool of data and
dividing by the number of samples in the pool. Once the average rate of occurrence has been
esumated, the formula for the Poisson distribution is given by

e"l'
x!

Pr{X=x}=

where x represents the Poisson count and A represents the average rate of occurrence. To use the
Poisson distribution to predict concentration values at downgradient wells, formulas for
constructing Poisson Prediction and Tolerance limits are given below.

2.2.4 Poisson Prediction Limits

To estimate a Prediction limit at a pardcular well using the Poisson model, the approach
described by Gibbons (1987b) and based on the work of Cox and Hinkley (1974) can be used. In
this case, an upper limit is estimated for an interval that will conmin all of k future measurements of
an analyte with confidence level 1-a, given n previous background measurements.

To do this, let Ty represent the sum of the Poisson counts of n background samples. The

- goal is to predict Ti", representing the total Poisson count of the next k sample measurements. As
060041
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Cox and Hinkiey show, if Tn has a Poisson disribudon with mean y and if no contaminadon has
occurred, it is reasonable to assume that Ty" will also have a Poisson distribution but with mean
cyL, where c depends on the number of future measurements being predicted.

In partcular, Cox and Hinckiey demonstrate that the quantity

[ - _ (T, -4-'1‘,)]I

(1+¢)
(T +T,. +T,.
(I+c)

has an approximate standard Normal distribution. From this relation, an upper prediczion limit for
Ti" is calculated by Gibbons to be approximarely

ct? 1), ¢
T; =CT. +—5-+ CIJT.(I'P-C-)-P-;

where t=t,_] o is the upper (1-a) percentile of the Student's t distribution with (n-1) degrees of
freedom. The quantity ¢ in the above formulas may be computed as k/n, where, as noted, k is the
number of future sampies being predicted.

EXAMPLE 10

Use the following benzene data from six background wells to estimate an upper 99% Poisson
Prediction limit for the next four measurements from a single downgradient well.

“Benzene Concenmanons (ppD)

Month Well 1 Well 2 Well 3 Well 4 Well § Well 6
I < < —<Z < << o)
2 <2 < <2 150 - 2 <2
3 < <2 < < <2 <2
4 2 12.0 <2 <2 <2 <2
5 <2 - < <2 <2 <2 10.0
6 <2 < < <2 <2
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SOLUTION “ 72 84

Step 1. Pooling the background dat yields n=36 samples, of which, 33 (92%) are nondetect.
Because the rate of detection is so infrequent (i.e., <10%), a Poisson-based Prediction
limit may be appropriate. Since four future measurements are to be predicted, k=4, and

hence, c=k/n=1/9.

Step 2.  Set each nondetect to half the detecuon limit or 1 ppb. Then compute the Poisson count
of the sum of all the background samples, in this case, Tp=33(1)+(12.0+15.0+10.0) =
70.0. To calcuiate an upper 99% Prediction limit, the upper 99th percentile of the 1-
dismribution with (n-1)=35 degrees of freedom must be taken from a reference tabie,

namely t35,.01=2.4377.
Step 3.  Using Gibbons' formula above, caicuiate the upper Prediction limit as:

._1 (2.4377)°  2.4377 (2.4377)* _
T, --9-(70)+ >0) + 5 70(14-9)-4———-4 =15.3ppb

Step 4. To test the upper Prediction limit, the Poisson count of the sum of the next four
downgradient wells should be caiculated. If this sum is greater than 15.3 ppb, there is
significant evidence of contamination at the downgradient well. If not, the well may be
regarded as clean undl the next testng period.

The procedure for generating Poisson prediction limits is somewhat flexible. The value k
above, for instance, need not represent multiple sampies from a singie well. It could also denote a
collection of single samples from k distinct wells, all of which are assumed to follow the same
Poisson distribution in the absence of contamination. The Poisson distribution also has the
desirable property that the sum of several Poisson variables also has a Poisson distribution, even if
the individual components are not identically distributed. Because of this, Gibbons (1987b) has
suggested that if several analytes (e.g., different VOCs) can all be modeled via the Poisson
distribution, the combined sum of the Poisson counts of all the analytes will also have a Poisson
distribution, meaning that a single prediction limit could be estimated for the combined group of
analytes, thus reducing the necessary number of statistical tests.

A major drawback to Gibbons' proposal of establishing a combined prediction limit for
sevenlanﬂymk&gifduﬁmhisMhﬁﬂuotbedmwhichmﬂywismpmﬁbkfm
"wiggering” the test. In pant this problem explains why the ground-water monitoring regulations
mandate that each analyte be tested separately. Sdill, if a large number of analytes must be regularly
tested and the detection rate is quite low, the overall facility-wide false positive rate may be
unaccepmbly high. To remedy this simation, it is probably wisest to do enough initial testing of
background and facility leachate and waste samples to determine those specific parameters present
at levels subsmntially greater than background. By limiting monitoring and statistical tests 1o a few
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| parameters meeting the above conditons, it should be possible to contain the overall facility-wide
false positive rate while satisfying the reguiatory requirements and assuring reliable identificaton
of ground-water contaminarion if it occurs.

Though quantitative information on a suite of VOCs may be automatically generated as a
consequence of the analytical method configuration (c.g., SW-846 method 8260 can provide
quantitative results for approximately 60 different compounds), it is usually unnecessary o
designate all of these compounds as leak detection indicators. Such practice generally aggravates
the problem of many comparisons and results in eievated false positive rates for the facility as a
whole. This makes accurate smtstical testing especially difficult. EPA therefore recommends that
the results of leachate testing or the waste analysis plan serve as the primary basis for designanng
reliable leak detection indicator parameters.

2.2.5 Poisson Tolerance Limits

To apply an upper Tolerance limit using the Poisson model to a group of downgradient
wells, the approach described by Gibbons (1987b) and based on the work of Zacks (1970) can be
taken. In this case, if no conamination has occurred, the estimated interval upper limit will conain
a large fraction of all measurements from the downgradient wells, often specified at 95% or mare.

The calculations involved in dériving Poisson Tolerance limits can seem non-intuiave,
primarily because the argument leading to a mathemarically rigorous Tolerance limit is complicated.
The basic idea, however, uses the fact that if each individual measurement follows a common
Poisson distribution with rate parameter, A, the sum of n such measurements will also follow a
Poisson distribution, this time with rare nA.

Because the Poisson distribudon has the property that its mue mean is equal to the rate
parameter A, the concentration sum of n background samples can be manipulated to estimate this
rate. But since we know that the distribution of the concentration sum is also Poisson, the possible
values of A can actually be narrowed to within a small range with fixed confidence probability ().

For each "possible” value of A in this confidence range, one can compute the percentile of the

Poisson diszribution with rate A that would lie above, say, 95% of all fumre downgradient
measurements. By setting as the "probable” rate, that A which is greater than all but a small
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percentage & of the most exzreme possible A's, given the values of n background sampies, one can
compute an upper tolerance limit with, say, 95% coverage and (1-)% confidence.

To actually make these computations, Zacks (1970) shows that the most probable rate A can
be calculated approximately as

1
I, = o 23[2T, +2)

where as before Tj, represents the Poisson count of the sum of n background samples (setung
nondetects to half the method detection limit), and

2
b4 7[2‘!'" + 2]
represents the y percentle of the Chi-square distribution with (2T+2) degrees of freedom.

To find the upper Tolerance limit with B% coverage (¢.g., 95%) once a probable rate A has
been estmated, one must compute the Poisson percentile that is larger than B% of all possible
measurements from that distribution, that is, the §% quantile of the Poisson distribution with mean
rate ATy, denoted by P-1(BA1s). Using a well-known mathematical relationship berween the
Poisson and Chi-square distributions, finding the f% quantile of the Poisson amounts to
determining the least positive integer k such that

z plk+21221y

where, as above, the quantity [2k+2] represents the degrees of freedom of the Chi-square
distribution. By calculating two times the estimated probable rate A1, on the right-hand-side of the
above inequality, and then finding the smallest degrees of freedom so that the (1-B)% percentile of
the Chi-square distibution is bigger than 2\1p, the upper tolerance limit k can be determined fairly
casily.

Once the upper tolerance limit, k, has been estimated, it will represent an upper Poisson
Tolerance limit having approximately §% coverage with Y% confidence in all comparisons with
downgnadient well measurements.

060043
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EXAMPLE 11

Use the benzene data of Example 10 to estimate an upper Poisson Tolerance limit with 95%
coverage and 95% confidence probabiliry.

SOLUTION

Step 1.

Step 2.

The benzene data consist of 33 nondetects with detection limit equal to 2 ppb and 3
detected values for a total of n=36. By setning each nondetect to half the detection limit
as before, one finds a total Poisson count of the sum equal t0 Tp=70.0. It is aiso known
that the desired confidence probability is y=.95 and the desired coverage is f=.95.

Based on the observed Poisson count of the sum of background samples, esomate the
probable occurrence rate Aty using Zacks' formula above as
Ay, -—x,[ZT 2]=—z,,[142] 2.37

Compute twice the probable occurrence rate as 2ATa=4.74. Now using a Chx-squm
table, find the smallest degrees of freedom (df), k. such that

a2k +2]24.74

Since the 5th percentle of the Chi-square distribution with 12 df equals 5.23 (but only
4.57 with 11 df), it is seen that (2k+2)=12, leading to k=5. Therefore, the upper
Poisson Tolerance limit is estimated as k=5 ppb.

Because the estumated upper Tolerance limit with 95% coverage equals 5 ppb, any
detected value among downgradient samples greater than 5 ppb may indicate possible
evidence of contamination.
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3. NON.PARAMETRIC COMPARISON OF
COMPLIANCE WELL DATA
TO BACKGROUND

When concentraton data from several compliance wells are to be compared with
concentraton data from background wells, one basic approach is analysis of variance (ANOVA).
The ANOVA technique is used to test whether there is statistically significant evidence that the
mean concentration of a constgtuent is higher in one or more of the compliance wells than the
baseline provided by background wells. Parametric ANOVA methods make two key assumptons:
1) that the data residuals are Normally distributed and 2) that the group variances are all
approximately equal. The steps for calculating a parametric ANOVA are given in the Interim Final
Guidance (pp. 5-6 10 5-14).

If either of the two assumptions crucial to a parametwric ANOVA is grossly violated, it is
recommended that a non-paramerric test be conducted using the ranks of the observations rather
than the original observations themselves. The Interim Final Guidance describes the Kruskai-
Wallis test when three or more well groups (including background data, see pp. 5-14 w0 5-20) are
being compared. However, the Kruskal-Wallis test is not amenable to two-group comparisons,
say of one compliance well 10 background data. In this case, the Wilcoxon Rank-Sum procedure
(also known as the Mann-Whimey U Test) is recommended and explained below. Since most
situations will involve the comparison of at least two downgradient wells with background data,
the Kruskal-Wallis test is presented first with an additonal exampie.

3.1 KRUSKAL-WALLIS TEST

When the assumptions used in a paramerric analysis of variance cannot be verified, e.g.,
when the original or ransformed residuals are not approximately Normal in distribution or have
significantly different group variances, an analysis can be performed using the ranks of the
observations. Usually, a non-parametric procedure will be needed when a substantial fracton of
the measurements are below detection (more than 15 percent), since then the above assumptions
are difficult to verify.

The assumption of independence of the residuals is still required. Under the null hypothesis

that there is no difference among the groups, the observations are assumed 10 come from identical
dismributions. However, the form of the diszibution need not be specified.
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A non-parametric ANOVA can be used in any situadon that the parametric analysis of
variance can be used. However, because the ranks of the data are being used, the minimum
sample sizes for the groups must be a lintle larger. A useful rule of thumb is to require a minimum
of three well groups with at least four observations per group before using the Kruskal-Wallis

procedure.

Non-parametric procedures typically need a few more observations than parametric
procedures for two reasons. On the one hand, non-parameric tests make fewer assumptions
concerning the distribution of the data and so more data is often needed to make the same judgment
that would be rendered by a paramerric test. Also, procedures based on ranks have a discrete
dismibution (unlike the continuous disaributons of parametric tests). Consequently, a larger
sample size is usually needed to produce test statistics that will be significant at a specified alpha
level such as 5 percent.

The reladve gfficiency of two procedures is defined as the ratio of the sample sizes needed by
cach w0 achieve a cermin ievel of power against a specified altemative hypothesis. As sampie sizes
get larger, the efficiency of the Kruskal-Wallis test relative to the parametric analysis of variance
test approaches a limit that depends on the underlying disribution of the data, but is always at least
86 percent. This means roughly that in the worst case, if 86 measurements are available for a
parametric ANOVA, only 100 sample values are needed to have an equivalently powerful Kruskal-
Wallis test. In many cases, the increase in sample size necessary to match the power of a
parametric ANOVA is much smaller ar not needed at all. The efficiency of the Kruskal-Wallis st
is 95 percent if the data are really Normal, and can be much larger than 100 percent in other cases
(c.g.. it is 150 percent if the residuals fallow a distribution called the double exponential).

These results conceming efficiency imply that the Kruskal-Wallis test is reasonably powerful
for detecting concentration differences despite the fact that the original data have been replaced by
their ranks, and can be used even when the data are Normally distributed. When the data are not
Normal or cannot be transformed to Normality, the Kruskal-Wallis procedure tends to be more
powerful for detecting differences than the usual parametric approach.

3.1.1 Adjusting for Tied Observations

Frequently, the Kruskal-Wallis procedure will be used when the dam contain a significant
fraction of nondetects (e.g., more than 15 percent of the sampies). In these cases, the parametric
assumptions necessary far the usual one-way ANOVA are difficult or impossible to verify, making
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Copper Concenmaton (ppb)
Background Compliance
Month Well 1 Well 2 Well 3

1 4.2 5.2 9.4

2 5.8 6.4 10.9

3 11.3 11.2 14.5

4 7.0 11.5 16.1

5 7.3 10.1 21.5

6 . 8.2 9.7 17.6
SOLUTION
Step 1. Rank the N=18 observations from 1 to 18 (smallest to largest) as in the following table.

Ranks of Copper Concentrations
Background Compliance
Month Well 1 Well 2 Well 3

1 1 2 8

2 3 4 11

3 13 12 15

4 5 14 16

5 6 10 18

6 7 9 17
Step 2.  Compute the Wilcoxon statistic by adding up the compliance well ranks and subtracting

n(n+1)/2, so that W=85-2]1=64.
Step 3.  Compute the expected value and standard deviation of W.
E(W)= -;-mn =36
SD(W) = 1/émm +1) =114 =10.677

Step4. Formthe lppmxmm: Z-score.

.
W-EW -2 _64-36-05
SD(W) 10.677

y

"

=2.576
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Step 5.  Compare the observed Z-score to the upper 0.01 percentile of the Normal distribution.
Since Z2=2.576>2.326=z¢;, there is significant evidence of contamination at the

compliance well at the 1 percent significance level.

3.2.1 Handling Ties in the Wilcoxon Test

Tied observations in the Wilcoxon test are handled in similar fashion to the Kruskal-Wallis
procedure. First, midranks are computed for all tied values. Then the Wilcoxon statistic is

computed as before but with a slight difference. To form the approximate Z-score, an adjustment
is made to the formula for the standard deviation of W in order to account for the groups of tied

values. The necessary formula (Lehmann, 1975) is:

3 - .
SD'(W)= \l——’“"‘l’: 1) (1 - Ih Sk _‘N)

where, as in the Kruskal-Wallis method, g equals the number of groups of distinct tied
observations and t; represents the number of tied values in the ith group.
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4. STATISTICAL INTERVALS: CONFIDENCE, T
TOLERANCE, AND PREDICTION

Three types of statistical intervals are often constructed from data: Confidence intervals,
Tolerance intervals, and Prediction intervals. Though often confused, the interpretations and uses
of these intervals are quite distinct. The most common interval encountered in a course on statistics
is a Confidence interval for some parameter of the distribution (e.g., the population mean). The
interval is constructed from sample data and is thus a random quandty. This means that each set of
sample data will generate a different Confidence interval, even though. the algorithm for

constructing the interval stays the same every time.

A Confidence interval is designed to contain the specified population parameter (usually the
mean concentration of a well in ground-water monitoring) with a designated level of confidence or
probability, denoted as 1-a. The interval will fail to include the true parameter in approximately o
percent of the cases where such intervals are constructed.

The usual Confidence interval for the mean gives information about the average concentration
level at a particular well or group of wells. It offers little informarion about the highest or most
exgeme sample concentrations one is likely to observe over time. Often, it is those extreme values
one wants to monitor to be protective of human heaith and the environment. As such, a
Confidence interval generally should be used only in two situations for ground-water data analysis:
(1) when directly specified by the permit or (2) in compliance monitoring, when downgradient
samples are being compared to a Ground-Water Protection Standard (GWPS) representing the
average of onsite background data, as is sometimes the case with an Alternate Contaminant Level
- (ACL). In other situadons it is usually desirable to employ a Tolerance or Prediction interval.

A Tolerance interval is designed to contain a designated proportion of the population (e.g.,
95 percent of all possible sample measurements). Since the interval is constructed from sample
data, it also is a random interval. And because of sampling fluctuations, a Tolerance interval can
contain the specified proportion of the popularion only with a cermin confidence level. Two
coefficients are associated with any Tolerance interval. One is the propartion of the populartion that
the interval is supposed to contain, called the coverage. The second is the degree of confidence
with which the interval reaches the specified coverage. This is known as the tolerance coefficient
A Tolerance interval with coverage of 95 percent and a tolerance coefficient of 95 percent is
constructed to contain, on average, 95 percent of the distribution with a probability of 95 percent

0060031
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Tolerance intervals are very useful for ground-water data analysis, because in many
situations onec wants o ensure that at most a small fraction of the compliance well sample
measurements exceed a specific concentration level (chosen to be protective of human health and
the environment). Since a Tolerance interval is designed to cover all but a small percentage of the
population measurements, observations should very rarely exceed the upper Tolerance limit when
testing small sample sizes. The upper Tolerance limit allows ane to gauge whether ar not too many
extreme concentration measurements are being sampled from compliance point wells.

Tolerance intervals can be used in detection monitaring when comparing compliance data to
background values. They also should be used in compliance monitoring when comparing
compliance data to certain Ground-Water Protection Standards. Specifically, the tolerance interval
approach is recommended for comparison with 8 Maximum Contaminant Level (MCL) or with an
ACL if the ACL is derived from health-based risk data.

Prediction intervals are constructed to contain the next sample value(s) from a population or -
distribution with a specified probability. That is, after sampling a background well for some time "
and measuring the concentration of an analyte, the data can be used to construct an interval that will
contain the next analyte sample or samples (assuming the distribution has not changed). A
Prediction interval will thus contain a future value or values with specified probability. Prediction
intervals can also be constructed to contain the average of several future observations.

Prediction intervals are probably most useful for two kinds of detection monitoring. The first
kind is when compliance point well data are being compared to background values. In this case the
Prediction interval is constucted from the background data and the compliance well data are
compared to the upper Prediction limits. The second kind is when intrawell comparisons are being
made on an uncontaminated well. In this case, the Prediction interval is constructed on past data
sampled from the well, and used to predict the behavior of future samples from the same well.

In summary, a Confidence interval usually contains an average value, a Tolerance interval
contains a proportion of the population, and a Prediction interval contains one or more future
observations. Each has a probability statement or "confidence coefficient” associated with it. For
mmaummmwmumawm

One should note that all of these intervals assume that the sample data used to construct the

intervals are Narmally distributed. In light of the fact that much ground-water concenmation data is
better modeled by a Lognormal distribution, it is recommended that tests for Normality be run on
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the logarithms of the original data before constructing the random intervals. If the data follow the
Lognarmal model, then the intervals should be constructed using the logarithms of the sample
values. In this case, the limits of these intervals should not be compared to the ariginal compliance
data or GWPS. Rather, the comparison should invoive the logged compliance dats or logged
GWPS. When neither the Normal or Lognormal models can be justified, 2 non-parametric version

of each interval may be utilized.

4.1 TOLERANCE INTERVALS

In detection monitoring, the compliance point samples are assumed to come from the same
distribution as the background values until significant evidence of contamination can be shown.
To test this hypothesis, a 95 percent coverage Tolerance interval can be constructed on the
background data. The background data should first be tesied to check the distmibutional
assumptions. Once the interval is constructed, each compliance sample is compared to the upper
Tolerance limit. If any compliance point sample exceeds the limit, the well from which it was
drawn is judged to have significant evidence of contamination (note that when testing a large
number of samples, the naumre of a Tolerance interval practically ensures that a few measurements
will be above the upper Tolerance limit, even when no contamination has occurred. In these cases,
the offending wells should probably be resampled in order to verify whether or not there is definite
evidence of contamination.)

if tie Tolcrance Emit has been consoucted using the logged background data, the compliance
point samples should first be logged before comparing with the upper Tolerance limit. The steps
for computing the actual Tolerance interval in dewection monitoring are detailed in the Interim Final
Guidance on pp. 5-20 to 5-24. One point about the table of factors x used to adjust the width of
the Tolerance interval is that these factors are designed to provide gt jeast 95% coverage of the
populaton. Applied over many data sets, the average coverage of these intervals will often be
close to 98% or more (see Guttman, 1970). To construct a one-sided upper Tolerance interval
with average coverage of (1-B)%, the x multiplier can be computed directly with the aid of a
Swdent's t-distribution table. In this case, the formula becomes

K=t . l+-:;

where the t-vaiue represents the (I-B)dx upper percentile of the t-disribution with (n-1) degrees of
freedom.
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In compliance monitoring, the Tolerance interval is calculated on the compliance point data,
so that the upper one-sided Tolerance limit may be compared to the appropriate Ground-Water
Protection Standard (i.e., MCL or ACL). If the upper Tolerance limit exceeds the fixed standard,
and especially if the Tolerance limit has been constructed to have an average coverage of 95% as
described above, there is significant evidence that as much as 5 percent or more of all the
compliance well measurements will exceed the limit and consequently that the compliance point
wells are in violation of the facility permit. The algorithm for computing Tolerance limits in
compliance monitoring is given on pp. 6-11 to 6-15 of the Interim Final Guidance.

EXAMPLE 14

The table below contains data that represent chrysene concentration levels (ppb) found in
mmplaobminedﬁumﬂcﬁvemphanceweusaamaﬁuingfadﬁty. Compute the upper
Tolerance limit at each well for an ayerage of 95% coverage with 95% confidence and determine
whether there is evidence of contamination. The alternare concentration limit (ACL) is 80 ppb.

Chrysene Concentration (ppb)
Month Well 1 Well 2 Well 3 Well 4 Well 5
1 19.7 10 68.0 26.8 47.0
2 39.2 7.2 48.9 17.7 30.5
3 7.8 16.1 30.1 31.9 15.0
4 12.8 5.7 38.1 22.2 234
Mean 19.88 9.80 46.28 24.65 28.98
SD 13.78 4.60 16.40 6.10 13.58
SOLUTION

Step 1. Before constructing the tolerance intervals, check the distributional assumptions. The
algorithm for a parametric Tolerance interval assumes that the data used to compute the
interval are Normally distributed. Because these data are more likely to be Lognormal 1
distribution than Normal, check the assumptions on the logarithms of the original data
given in the table below. Since each well has only four observations, Probability Plots
are not likely to be informative. The Shapiro-Wilk or Probability Plot Correlation
Coefficient tests can be run, but in this example only the Skewness Coefficient is
examined to ensure that gross deparmures from Lognormality are not missed.
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Logged Chrysene Concentration [log(ppb)]

Month Well 1 Well 2 Well 3 Well 4 Well 5

] 298 2.32 4.22 3.29 3.85

2 3.67 1.97 3.89 2.87 3.42

3 2.05 2.78 3.40 3.46 2.71

4 2.55 1.74 3.64 3.10 3.15
Mean 2.81 2.20 3.79 3.18 3.28
SD 0.68 0.45 0.35 0.25 0.48

Step 2. The Skewness Coefficients for each well are given in the following table. Since none of

than 1 in absolute value, approximate Lognormality (that is,

the coefficients is greater
Normality of the logged data) is assumed for the purpose of constructing the tolerance
intervals. '
Well Skewness  ISkewness!

1 210 210

2 334 334

3 192 192

4 -.145 .145

5 -.020 020

Step 3. Compute the tolerance interval for each compliance well using the logged concentration
data. The means and SDs are given in the second table above.

Step 4. The twierance factor for a one-sided Normal tolerance interval with an average of 95%
coverage with 95% probability and n=4 observations is given by

The upper tolerance limit is calculated below for each of the five wells.

Well 1
Well 2
Well 3
Well 4
Well 5§

K=ty gyl 43 =2631

2.81+2.631(0.68)= 4.61 log(ppb)
2.20+2.631(0.45)= 3.38 log(ppb)
3.79+2.631(0.35)= 4.71 log(ppb)
3.18+2.631(0.25)= 3.85 log(ppb)
3.28+2.631(0.48)= 4.54 log(ppb)
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Step 5. Compare the upper tolerance limit for each well to the logarithm of the ACL, that is
log(80)=4.38. Since the upper tolerance limits for wells 1, 3, and 5 exceed the logged
ACL of 4.38 log(ppb), there is evidence of chrysene contamination in wells 1, 3, and §.

4.1.1 Non-parametric Tolerance Intervals

When the assumptions of Normality and Lognommality cannot be justified, especially when a
significant portion of the samples are nondetect, the use of non-parametric tolerance intervals
should be considered. The upper Tolerance limit in a non-paramerric setting is usually chosen as
an order statistic of the sample data (see Guttman, 1970), commonly the maximum value or maybe
- the second largest value observed. As a consequence, non-parametric intervals should be
constructed only from wells that are not contaminated. Because the maximum sample value is
often taken as the upper Tolerance limit, non-parametric Tolerance intervals are very easy to
construct and use. The sample data must be ordered, but no ranks need be assigned 1o the
concentration values other than to determine the largest measurements. This also means that
nondetects do not have to be uniquely ordered or handled in any special manner.

One advantage to using the maximum concentration instead of assigning ranks to the data is
that non-parametric intervals (including Tolerance intervals) are sensitive w0 the actual magnitudes
of the concentration data. Another plus is that unless all the sample data are nondetect, the
maximum value will be a detected concentration, leading to a well-defined upper Tolerance limit.

Once an order statistic of the sampie data (e.g., the maximum value) is chosen to represent
the upper tolerance limit, Guttman (1970) has shown that the coverage of the interval, consoucted
repeatedly over many data sets, has a Beta probability density with cumulative distribution

IFn+l) .o yel
l‘(n-xn-t-l)l‘(xn)'l (1=u)™du

I,(n-m+1.m)=_[:
where n=# samples in the data set and m={(n+1)—(rank of upper tolerance limit value)]. If the
maximum sample value is selected as the tolerance limit, its rank is equal to n and so m=]. If the
second largest value is chosen as the limit, its rank would be equal to (n—1) and so m=2.

Since the Beta dismribution is closely related to the more familiar Binomial distribution,
Guttman has shown that in order to construct a non-parametric tolerance interval with at least f%
coverage and (1-a) confidence probability, the number of (background) samples must be chosen
such that
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Table A-6 in Appendix A provides the minimum coverage levels with 95% confidence for
various choices of n, using either the maximum sample value or the second largest measurement as
the tolerance limit. As an example, with 16 background measurements, the minimum coverage is
B=83% if the maximum background value is designated as the upper Tolerance limit and B=74% if
the Tolerance lumt is takcn 0 be the mond largest hackgronnd value. In general, Table A-6

W Paramerric tolerance intervals do not require as many background
samples precisely because the form of the underlying distribution is assumed to be known.

Because the coverage of the above non-parametric Tolerance intervals follows a Beta
distributon, it can also be shown thar the gverage (not the minimum as discussed above) level of
coverage is equal to 1={m/(n+1)] (see Guuman, 1970). In particular, when the maximum sample
value is chosen as the upper tolerance limit, m=1, and the gxpected coverage is equal to n/(n+1).
This implies that at least 19 background samples are necessary to achieve 95% coverage on

average.
EXAMPLE 15

Use the following copper background data to eswblish a non-parametric upper Tolerance
limit and determine if either compliance well shows evidence of copper contamination.

Copper Concentration (ppb)
Background Wells Compliance Wells
Moath Well ] Well 2 Well 3 Well 4 Wel 5

1 <S 9.2 <5
2 <S5 <5 54
3 7.5 <5 6.7
4 <5 6.1 <5
5 <5 8.0 < 6.2 <5
6 <5 5.9 <S <5 <
7 6.4 < <5 7.8 5.6
8 6.0 <S <5 104 <5
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SOLUTION

Step 1. Examine the background data in Wells 1, 2, and 3 to determine thar the maximum
observed value is 9.2 ppb. Set the 95% confidence upper Tolerance limit equal to this
value. Because 24 background samples are available, Table A-6 indicates that the

minimum coverage is equal to 88% (the expected average coverage, however, is equal
24/25=96%). To increase the coverage level, more osackground samples would have to

be collected.

Step 2. Compare each sample in compliance Wells 4 and 5 to the upper Tolerance limit. Since
none of the measurements at Well 5 is above 9.2 ppb, while one sampie from Well 4 is
above the limit, conclude that there is significant evidence of copper contaminarion at
Well 4 but not Well 5.

4.2 PREDICTION INTERVALS

When comparing background data to compliance point samples, a Prediction interval can be
constructed on the background values. If the distributions of background and compliance point
data are really the same, all the compliance point samples should be contained below the upper
Prediction interval limit. Evidence of contamination is indicated if one or more of the compliance
samples lies above the upper Prediction limit.

With intrawell comparisons, a Prediction interval can be computed on past data to contain a
specified number of future observations from the same well, provided the well has not been
previously conaminated. If any one or more of the future samples falls above the upper Prediction
limit, there is evidence of recent contamination at the well. The steps to calculate parametric
Prediction intervals are given oa pp. 5-24 0 5-28 of the Interim Final Guidance.

EXAMPLE 16

The dam in the table below are benzene concentrations measured at a groundwater monitoring
facility. Calculate the Prediction interval and determine whether there is evidence of contamination.

Background Well Data Compliance Well Data
Benzene Concentration Benzene Concentration
Sampling Dae (ppd) Sampling Date (ppb)
Month 1 . 12.6 Month 4 - 48.0
30.8 : 30.3
52.0 42.5
28.1 ' 15.0
Month 2 33.3
44.0 nw=d
3.0 Mean=33.95
12.8 SD=14.64
060058



Month 3 58.1 Month 5 47.6
: 12.6 3.8
17.6 _ 2.6
25.3 51.9
n=12 n=4
Mean=27.52 Mean=26.48
SD=17.10 SD=26.94
SOLUTION

Step 1. First test the background data for approximate Normality. Only the background data are
included since these values are used to construct the Prediction interval. -

Step 2. A Probability Plot of the 12 background values is given below. The plot indicates an
overall pattern that is reasonably linear with some modest departures from Normality.
To further test the assumption of Normality, run the Shapiro-Wilk test on the

background data.

PROBABILITY PLOT

NORMAL QUANTILES

Step 3. List the dam in ascending and descending order as in the following table. Also calculate
medxﬁumx(w;)-x(?mdmuldply by the coefficients a,.;, taken from Table A-1
to get the components of vector b; used to calculate the Shapiro-Wilk statistic (W).
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Step 7.

Step 8.

Step 9.

i X({) X(nei+1) n-iel b
1 3.0 58.1 0.548 30.167
2 12.6 52.0 0.333 13.101
3 12.6 4.0 0.235 7.370
4 12.8 33.3 0.159 3.251
5 17.6 30.8 0.092 1.217
6 253 28.1 0.030 0.085
7 28.1 25.3 b=55.191
8 30.8 17.6
9 333 12.8

10 44.0 12.6

11 52.0 12.6

12 58.1 3.0

Sum the components b; in column 5 to get quantity b. Compute the standard deviation
of the background benzene values. Then the Shapiro-Wilk statistic is given as

55.191

b
w = =0.947.
=[sﬂn-1:r [17.101711 0.947

The critical value at the 5% level for the Shapiro-Wilk test on 12 observatons is 0.859.
Since the calculated value of W=0.947 is well above the critical value, there is no
evidence to reject the assumption of Normality.

Compute the Prediction interval using the original background data. The mean and
standard deviation of the 12 background samples are given by 27.52 ppb and 17.10
ppb, respectively.

Since there are two future months of compliance data to be compared to the Prediction
limit, the number of future sampling periods is k=2. At each sampling period, a mean of
four independent samples will be computed, so m=4 in the prediction interval formula
(see Interim Final Guidance, p. 5-25). The Bonferroni t-statistic, ) 2 _gs) With k=2
and 11 df is equivalent to the usual t-smtistic at the .975 level with 11 df, ie.,
111"97532.201.

Compute the upper one-sided Prediction limit (UL) using the farmula:

1 1
Xtttk 9No 'y

Then the UL is given by:

UL=27.52+ (17.1oxzm15/%+é = 49.25ppb.

Compare the UL to the compliance data. The means of the four compliance well
observations for months 4 and 5 are 33.95 ppb and 26.48 ppb, respectively. Since the
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mean concentrations for months 4 and 5 are below the upper Prediction limit, there is no
evidence of recent contamination at the monitoring facility.

4.2.1 Non-parametric Prediction Intervals

When the parametric assumpdons of a Normal-based Prediction limit cannot be justified,
often due to the presence of a significant fraction of nondetects, a non-parametric Prediction
interval may be considered instead. A non-parametric upper Prediction limit is typically
constructed in the same way as a non-parametric upper Tolerance limit, that is, by esumating the
limit to be the maximum value of the set of background samples.

The difference between non-parametric Tolerance and Prediction limits is one of
interpretation and probability. Given n background measurements and a desired confidence ievel,
a non-paramerric Tolerance interval will have a certain coverage percentage. With high probability,
the Tolerance interval is designed to miss only a small percentage of the samples from
downgradient wells. A Prediction limit, on the other hand, involves the confidence probability that
the next future sample or samples will definitely fall below the upper Prediction limit. In this
sense, the Prediction limit may be thought of as a 100% coverage Tolerance limit for the next k
furare samples. '

As Gutman (1970) has indicated, the confidence probability associated with predicting that
the next single observation from a downgradient well will fall below the upper Prediction limit --
estimated as the maximum background value - is the same as the gxpecied coverage of a similarly
constructed upper Tolerance limit, namely (1-a)=n/(n+1). Furthermore, it can be shown from
Gibbons (1991b) that the probability of having k future sampies all fall below the upper non-
paremetric Prediction limit is (1-a)=n/(n+k). Table A-7 in Appendix A lists these confidence
levels for various choices of n and k. The false positive rate associated with a single Prediction
limit can be computed as one minus the confidence level.

Balancing the ease with which non-paramerric upper Prediction limits are constructed is the
fact that, given fixed numbers of background sampies and furure sample values to be predicted, the
maximum confidence level associated with the Prediction limit is also fixed. To increase the level
of confidence, the only choices are to 1) decrease the number of future values to be predict=d at any
testing period, or 2) increase the number of background samples used in the test. Table A-7 can be
used along these lines to plan an appropriate sampling strategy so that the false positive rate can be
minimized and the confidence probability maximized to a desired level
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EXAMPLE 17

Use the following arsenic data from a monitoring facility to compute a non-parameuwric upper
Prediction limit that will contain the next 2 monthly measurements from a downgradient well and
determine the level of confidence associated with the Prediction limit

Arsenic Concentrations (ppb)
Background Wells Compliance
Month Well ] Well 2 Well 3 Well 4
1 <5 7 <5
2 <5 6.5 <5
3 8 <5 10.5
4 <5 6 <5
5 9 12 <5 8
6 10 <5 9 14

SOLUTION

Step 1.

Step 2.

Step 3.

Determine the maximum value of the background data and use this value to estimate the
upper Prediction limit. In this case, the Prediction limit is set to the maximum value of
the n=18 sampies, or 12 ppb. As is true of non-paramerric Tolerance intervals, only
uncontaminated wells should be used in the construction of Prediction limits.

Compute the confidence level and false positive rate associated with the Prediction limit.
Since two future samples are being predicted and n=18, the confidencs level is found to
be n/(n+k)=18/20=90%. Consequently, the Type 1 error or false positive rate is equal to
(1-.90)=10%. If a lower false positve rate is desired, the number of background
samples used in the test must be enlarged.

each of the downgradient samples against the upper Prediction limit. Since the
value of 14 ppb for month 2 exceeds the limit, conclude that there is significant evidence
of contaminarion at the downgradient well at the 10% level of significance.

4.3 CONFIDENCE INTERVALS

Confidence intervals should only be conszucted on data collected during compliance
monitoring, in particular when the Ground-Water Protection Standard (GWPS) is an ACL
computed from the average of background samples. Confidence limits for the average
concentration levels at compliance wells should not be compared to MCLs. Unlike a Tolerance
interval, Confidence limits for an average do not indicate how often individual samples will exceed
the MCL. Conceivably, the lower Confidence limit for the mean concentration at a compliance
well could fall below the MCL, yet 50 percent or more of the individual samples might exceed the
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MCL. Since an MCL is designed 1o set an upper bound on the acceptable contamination, this
would not be protective of human health or the environment.

When comparing individual compliance wells to an ACL derived from average backgmund
levels, a lower one-sided 99 percent Confidence limit should be constructed. If the lower
Confidence limit exceeds the ACL, there is significant evidence that the true mean concentration at
the compliance well exceeds the GWPS and that the facility permit has been violated. Again, in
most cases, a Lognormal model will approximate the data better than a Narmal diszribution model.
It is therefore recommended that the initial data checking and analysis be performed on the
logarithms of the data. If a Confidence interval is constructed using logged concentration data, the
lower Confidence limit should be compared to the logarithm of the ACL rather than the original
GWPS. Steps for computing Confidence intervals are given on pp. 6-3 to 6-11 of the Interim

Final Guidance.

000083

61



Draft 12893 e i
| B 7284
5. STRATEGIES FOR MULTIPLE COMPARISONS

§.1 BACKGROUND OF PROBLEM

Multiple comparisons occur whenever more than one statistical test is performed during any
given monitoring or evaluation period. These comparisons can arise as a result of the need to test
multiple downgradient wells against a pool of upgradient background data or to test several
indicator parameters for contamination on a reguiar basis. Usually the same statistical test is
performed in every comparison, each test having a fixed level of confidence (1-a), and a

corresponding false positive rate, @

The false positive rate (or Type 1 error) for an individual comparison is the probability that
the test will faisely indicate contamination, i.c., that the test will "migger,” though no contamination
has occurred. If ground-water data measurements were always constant in the absence of
contamination, false positives would never occur. But ground-water measurements typically vary,
either due to natural variaton in the levels of background concentrations or to variation in lab -
measurement and analysis.

Applying the same test to each comparison is acceptable if the number of comparisons is
small, but when the number of comparisons is moderate to large the false positive rawe associated
with the testing network as a whole (that is, across all comparisons involving a separate statistical
test) can be quite high. This means that if enough tests are run, there will be a significant chance
that at least one test will indicate contamination, even if no actual contamination has occurred. As
an example, if the testing network consists of 20 separate comparisons (some combination of
muluple wells and/or indicator parameters) and a 99% confidence level Prediction interval limit is
used on each comparison, one would expect an overall network-wide false positive rate of over
18%, even though the Type I error for any single comparison is only 1%. This means there is
nearly 1 chance in 5 that one or more comparisons will falsely register potential conamination even
if none has occurred. With 100 comparisons and the same testing procedure, the overall network-
wide false positive rate jumps to more than 63%, adding additional expense to verify the lack of
contamination at falsely triggered wells.

To lower the network-wide false positve rate, there are several imporant considerations. As
nowdinSectionz.ZA.onlymoseconsﬁmentsthnliave been shown w be reliable indicators of
poteatial contamination should be statistically tested on a regular basis. By limiting the number of
mm&msﬁmwthemwuaﬁﬂindinmmeomnnmwofmﬁsﬁalmpﬁmm
must be made can be reduced, lowering the facility-wide false alarm rate. In addition, depending

& 0060064



7284

Draft 1/28/93

on the hydrogeology of the site, some indicator parameters may need to be tested only at one (or 2
few adjacent) regulated waste units, as opposed to testing across the entire facility, as long as the
permit specifies a common point of compliance, thus further limiting the number of total statistical

comparisons necessary.

One could also try to lower the Type I error applied to each individual comparison.
Unfortunately, for a given stadistical test in general, the lower the false positive rate, the lower the
power of the test to detect real contamination at the well. If the statistical power drops too much,
real contamination will not be identified when it occurs, creating a situation not protective of the
environment or human health. Instead, alternative testing swategies can be considered that
specifically account for the nomber of statistical comparisons being made during any evaluation
period. All alternative testing strategies should be evaluated in light of two basic goals:

1. Is the network-wide false positive rate (across all constituents and wells being
tested) acceptably low? and

2. Does the testng strategy have adequate statistical power o detect real contamination
when it occurs?

To establish a standard recommendation for the petwork-wide overall false positive rate, it

should be noted that for some statistical procedures, EPA specifications mandate that the Type I

error for any individual comparison be at least 1%. Ihe mtionale for this minimum requirement is

maotivared by statstical power, For a given test, if the Type I error is set too low, the power of the
test will dip below “acceptabie” levels. EPA was not abile to specify 2 minimum level of acceptable
power within the regulations because to do s0 would require specification of a minimum differeace
of environmental concern between the null and altemative hypotheses. Limited current knowledge
about the health and/or environmental effects associated with incremental changes in concentration
levels of Appendix IX constituents greatly complicates this task. Therefore, minimum false
positive rates were adopted for some statistical procedures until more specific guidance could be
recommended. EPA's main objective, however, as in the past, is to approve tests that have
adequate smatistical power to detect real contamination of ground water, and not to enforce

This emphasis is evident in §264.98(g)(6) for detection monitoring and §264.99(i) for
compliance monitoring. Both of these provisions allow the owner ar operator to demonstrate that
the staristically significant difference berween background and compliance point wells or berween
compliance point wells and the Ground-Water Protection Standard is an anifact caused by an error
in sampling, analysis, statistical evaluation, or natural variation in ground-water chemistry. To
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make the demonstration that the statistically significant difference was caused by an error in
sampling, analysis, or statistical evaluation, re-testing procedures that have been approved by the
Regional Administrator can be written into the facility permit, provided their statistical power is
comparable to the EPA Reference Power Curve given below.

For large monitoring netwarks, it is almost impossible to maintain a low network-wide
overall false positive rate if the Type I errors for individual comparisons must be kept above 1%.
As will be seen, some altemative testing strategies can achieve a low network-wide faise positive
rate while maintaining adequate power to detect contamination. EPA therefore recommends hat
instead of the 1% criterion for individual comparisons, the gverall network-wide false positive rate
(across all wells and constituents) of any alternative testing strategy should be kept to
approximately 5% for each monitoring or evaluation period, while maintaining statistical power
comparable to the procedure below.

The other goal of any testing strategy should be to maintain adequate statistical power for
detecting contamination. Technically, power refers to the probability that a statistical testing
procedure will register and identify evidence of contamination when it exists. However, power is
typically defined with respect to 2 single comparison, not 2 network of comparisons. Since some
testing procedures may identify contamination more readily when several wells in the network are
contaminated as opposed to just one or two, it is suggested that all testing strategies be compared
on the following mare stringent, but common, basis. Let the effective power of a testing
procedure be defined as the probability of detecting contamination in the monitoring network when
one and only one well is contaminated with a single constituent Note that the effective power is a
conservative measure of how 2 testing regimen will perform over the network, becanse the test
must uncover one contaminated well among many clean ones (i.e., like "finding a needle in a

haystack™).

To esmblish 2 recommended standard for the statistical power of a testing strategy, it must be
understood that the power is not single number, but rather a function of the level of contamination
actually present. For most tests, the higher the level of contamination, the higher the staristical
power; likewise, the lower the contamination level, the lower the power. As such, when
increasingly contaminated ground water passes a paricular well, it becomes easier for the staristical
test to distinguish background levels from the contaminated ground water; consequently, the power
is an increasing function of the contamination ievel.
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Perhaps the best way to describe the power function associated with a particular tesung
procedure is vig & graph, such as the example below of the power of a standard Normal-based
upper Prediction limit with 99% confidence. The power in percent is plotied along the y-axis
against the standardized mean level of conmamination along the x-axis. The standardized
contamination levels are in units of standard deviations above the baseline (estimated from
background data), allowing different power curves to be compared across indicator parameters,

wells, and so forth. The standardized units, A, may be computed as

A= (Mean Contamination Level) - (Mean Background Level)
" (SD of Background Data)

In some situations, the probability that contamination will be detected by a parucular testing
procedure may be difficult if not impossible to derive analytically and will have to be simulated on
a computer. In these cases, the power is rypically estimated by generating Normally-distributed
random values at different mean leveis and repeatedly simulating the test procedure. With enough
repetitions a reliable power curve can be plonted (e.g., see figure below).

EPA REFERENCE POWER CURVE
(16 Background Samples)

" 100

EFFECTIVE POWER (%)
8
| §

S I VR I SRR U R |
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Notice that the power at A=0 represents the false positive rate of the test, because at that point
no contamination is actually present and the curve is indicating how often contamination will be
"detected” anyway. As long as the power at A=0 is approximately 5% (except for tests on an
individual constituent at an individual well where the false positive rate should approximate 1%)
and the rest of the power curve is acceptably high, the testing strategy should be adequately
comparable 10 EPA standards.

To determine an acceptable power curve for comparison to alternative testing strategies, the
following EPA Reference Power Curve is suggested. For a given and fixed number of
background measurements, and based on Normally-distributed data from a single downgradient
well generated at various mean levels above background, the EPA Reference Power Curve will
represent the power associated with a 99% confidence upper prediction limit on the next single
funure sample from the well (see figure above for n=16).

Since the power of a test depends on several factors, including the background sample size,
the type of test, and the number of comparisons, a different EPA Reference Power Curve will be
associated with each distinct number of background samples. Power curves of alternative tests
should only be compared to the EPA Reference Power Curve using a comparable number of
background measurements. If the power of the alternative test is at least as high as the EPA
reference, while maintaining an approximate 5% overall false positive rate, the alternative

procedure should be accepabie.

With respect to power curves, keep in mind three important considerations: 1) the power of
any testing method can be increased merely by relaxing the false positive rate requirement, letting a
become larger than 5%. This is why an approximate 5% alpha level is suggested as the standard
- guidance, to ensure fair power comparisons among competing tests and to limit the overall
network-wide false positive rate. 2) The simulation of alternative testing methods should
incorporate every aspect of the procedure, from initial screens of the data to final decisions
conceming the presence of contamination. This is especially applicable to strategies that invoive
some form of retesting at potentially contaminated wells. 3) When the testing strategy incorpaorates
multiple comparisons, it is crucial that the power be gauged by simulating contamination in one and
only one indicator parameter at a single well (i.e., by measuring the gffective power). As noted
euiier.EPAmmendsMpowbedeﬁnedwmwﬁvely.fmcing any test procedure to find
"the needle in the haystack.”
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. §.2 POSSIBLE STRATEGIES

§.2.1 Parametric and Non-parametric ANOVA

As described in the Interim Final Guidance, ANOVA procedures (either the parametric
method or the Kruskal-Wallis test) allow multiple downgradient wells (but not multiple
constituents) to be combined into a single statistical test, thus enabling the network-wide false
positive rate for any single constituent to be kept at 5% regardless of the size of the network. The
ANOVA method also maintains decent power for detecting real contamination, though only for
small 1o moderately-sized networks. In large networks, even the parametric ANOVA has a
difficv!t ime finding the "needle in a haystack.” The reason for this is that the ANOVA F-test
combines all downgradient wells simultaneously, so that “clean” wells are mixed together with the
single contaminated well, potentially masking the test's ability to detect the source of
contamination. :

Because of these characteristics, the ANOVA procedure may have poorer power for detecting
a narrow plume of contamination which affects only one or two wells in a much larger network
(say 20 or more comparisons). Another drawback is that a significant ANOVA test result will not
indicate which well or wells is potentially contaminated without further post-hoc testing.
Furthermore, the power of the ANOVA procedure depends significantly on having at least 3 to 4
samples per well available for testing. Since the samples must be statistically independent,
collection of 3 or mare sampies at a given well may necessitate a several-month wait if iie nasiral
ground-water velocity at that well is low. In this case, it may be tempting to look for other
straregies (e.g., Tolerance or Prediction intervals) that allow statistical testing of each new ground
water sample as it is collected and analyzed. Finally, since the simple one-way ANOVA procedure
outlined in the Interim Final Guidance is not designed to test multiple constituents simultaneously,
the overall false positive rate will be approximately 5% per constituent, leading to a potentially high
overall network-wide false positive rate (across wells and constituents) if many constituents need
to be ested.

5§.2.2 Retesting with Parametric Intervals

One strategy alternative to ANOVA is a modification of approaches suggested by Gibbons
(1991a) and Davis and McNichols (1987). The basic idea is to adopt a two-phase testing strategy.
First, new samples from each well in the network are compared, for each designated constituent
parameter, against an upper Toicrance limit with pre-specified average coverage (Note that the
upper Tolerance Limit will be different for each constiment). Since some constituents at some wells
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in a large network would be expected to fail the Tolerance limit even in the absence of
contamination, each well that triggers the Tolerance limit is resampied and only those consttuents
that "riggered” the limit are retested via an upper Prediction limit (again differing by constituent).
If ane or more resamples fails the upper Prediction limit, the specific constituent at that well failing
the test is deemed to have a concentration level significantly greater than background. The overall
strategy is effective for large networks of comparisons (e.g., 100 or more comparisons), but also
flexible enough to accommodate smaller networks.

To design and implement an appropriate pair of Tolerance and Prediction intervals, one must
know the number of background samples available and the number of comparisons in the network.
Since parametric intervals are used, it is assumed that the background data are either Normal or can
be transformed to an approximate Normal distribution. The tricky part is to choose an average
coverage for the Tolerance interval and confidence level for the Prediction interval such that the
twin goals are met of keeping the overall false positive rai to approximately 5% and maintaining
adequate statistical power.

To derive the overall false positive rate for this retesting strategy, assume that when no
contamination is present each constitent and well in the network behaves independently of other
constiteents and wells. Then if A;j denotes the event that well i is riggered falsely at some stage of
the testing, the overall false positive rate across m such comparisons can be written as

ol @ =Pr{A, orA,or...orAor...arA_}= l-ﬁPr{Ki}

where Aj denotes the complement of event A, Since P} is the probability of not registering a
false trigger at uncontaminated well i, it may be written as

Pr{A,} = Pr{X, S TL}+Pr{X, > TL} x Pr{Y, SPLI X, > TL}

where X represents the original sample at well i, Y; represents the concentrations of one or more
resamples at well i, TL and PL denote the upper Tolerance and Prediction limits respectively, and
the right-most probability is the conditional event that all resample concentrations fall below the
Prediction limit when the inirial sample fails the Tolerance limit

Letting x=Pr(X;STL) and y=Pr(Y;<PL | X;>TL), the overall false positive rate across m
constituent-well combinations can be expressed as
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owla=1-[x+(1-x)-y]"

As noted by Guttman (1970), the probability that any random sample will fall below the
upper Tolerance limit (i.., quantity x above) is equal to the expected or average coverage of the
Tolerance interval. If the Tolerance interval has been constructed to have average coverage of
95%, x=0.95. Then given a predetermined value for x, a fixed number of comparisons m, and a
desired overall false positive rate ., we can solve for the conditional probability y as follows:

®l-a-x

l=-x

If the conditional probability y were equal to the probability that the resampie(s) for the ith
constituent-well combination falls below the upper Prediction limit, one could fix a at, say, 5%,
and construct the Prediction interval to have confidence level y. In that way, one could guarantee
an expected nerwork-wide false positive rate of 5%. Unfortunately, whether or not one or mare
resamples falls below the Prediction limit depends partly on whether the initial sampie for that
comparison eclipsed the Tolerance limit. This is because the same background data are used to
construct both the Tolerance limit and the Prediction limit, creating a statistical dependence between
the tests.

The exact relationship berween the conditional probability y and the unconditional probability
Pr{Y;<PL] is not known; however, simulations of the testing strategy suggest that waen dic
confidence level for the Predicrion interval is equated to the above solution for y, the overall
network-wide false positive rate turns out to be higher than 5%. How much higher depends on the
number of background samples and aiso the number of downgradient comparisons. Even with a
choice of y that guarantees an expected facility-wide false positive rate of 5%, the power
characteristcs of the resulting testing strategy are not necessarily equivalent to the EPA Reference
Power Curve, again depending on the number of background samples and the number of

monitoring well-constituent combinations in the network.

In practice, to meet the selection criteria of 1) establishing an overall false positive rate of
approximately 5% and 2) maintaining adequate statistical power, the confidence level chosen for
the upper Prediction limit should be somewhat higher than the solution y w the preceding equation.
The table below provides recommended choices of expected coverage and confidence levels for the
Tolerance interval-Prediction interval pair when using specific combinations of numbers of
downgradient comparisons and background samples. In general, one should pick lower coverage
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Tolerance limits for smaller networks and higher coverage Tolerance limits for larger nerworks.
That way (as can be seen in the table), the resulting Prediction limit confidence levels will be low
enough to allow the construction of Prediction limits with decent statistical power.

PARAMETRIC RETESTING STRATEGIES

# # BG TOLERANCE PREDICTION
COMPARISONS SAMPLES COVERAGE (%) LEVEL (%) RATING

8 95 90 *s

16 95 90 b

5 16 95 85 *

24 95 85 s

24 95 90 o
LB 93 98 -

20 16 95 97 s

24 95 97 s

16 938 07 13

16 99 92 *

50 24 98 95 s

24 99 90 b

16 ~ OB 98 *

100 24 99 95 ¢

24 98 98 1

Note: ** = strongly recommended
* = recommended

Only strategies that approximately met the selection criteria are listed in the table. It can be
seen that some, but not all, of these strategies are sgongly recommended. Those that are merely
"recommended"” failed in the simulations to fully meet one or both of the selection criteria. The
'perfmmanceofallﬂxexeeommended strategies, however, should be adequate to correctly identify
contamination while maintaining a modest facility-wide false positive rate.

Once a combination of coverage and confidence levels for the Tolerance-Prediction interval
pair is selected, the statistical power of the testng strategy should be estimated in order to compare
with the EPA Reference Power Curve (particularly if the testing scenario is different from those
computed in this Addendum). Simulation results have suggested that the above method for
choosing a two-phase testing regimen can offer statistical power comparable to the EPA Reference
for almost any sized monitoring network (see power curves in Appendix B).
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Several examples of simulated power curves are presented in Appendix B. The range of
downgradient wells tested is from 5 to 100 (note that the number of wells could actually represent
the number of constituent-well combinations if testing multiple parameters), and each curve is
based on either 8, 16, ar 24 background samples. The y-axis of each graph measures the effective
power of the testing strategy, ic., the probability that contamination is detected when gne and only
ong constituent at a single well has a mean concentration higher than background level. For each
case, the EPA Reference Power Curve is compared to two different two-phase testing strategies. In
the first case, wells that trigger the initial Tolerance limit are resampled once. This single resample
is compared to a Prediction limit for the next future sample. In the second case, wells that trigger
the Tolerance limit are resampled twice. Both resamples are compared to an upper Prediction limit
for the next twp future sampies at that well. :

The simulated power curves suggest two points. First, with an appropriate choice of
coverage and prediction levels, the two-phase retesting strategies have comparable power to the
EPA Reference Power Curve, while maintaining low overall network-wide false positive rates.
Second, the power of the retesting strategy is slightly improved by the addition of a second
resample at wells that fail the initial Tolerance limit, because the sample size is increased.

Overall, the two-phase testing strategy defined above—i.e., first screening the network of
wells with a single upper Tolerance limit, and then applying an upper Prediction limit to resamples
from wells which fail the Tolerance interval--appears to meet EPA's objectives of maintaining
adequate statistical power for detecting contamination while limiting network-wide false positive
rates © low levels. Furthermore, since each compliance well is compared against the interval limits
scparately, 2 narrow plume of contamination can be identified more efficiently than with an
ANOVA procedure (e.g., no post-hoc testing is necessary to finger the guilty wells, and the two-
phase interval testing method has more power against the "needle-in-a-haystack” contamination
hypothesis). '

5.2.3 Retesting with Non-parametric Intervals

When parametric intervals are not appropriate for the data at hand, cither due to a large
fraction of nondetects or 2 lack of fit to Normality or Lognormality, a network of individual
comparisons can be handied via rewesting using non-parametric Prediction limits. The strategy is w
establish a non-paramerric prediction limit for each designated indicator parameter based on
background samples that accounts for the number of well-constituent comparisons in the overall
netwark.
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In order to meet the twin goals of maintaining adequate statistical power and a low overall
rate of false positives, 8 non-paramewic strategy must involve some level of retesting at those wells
which initially indicate possible contamination. Retesting can be accomplished by taking a specific
number of additional, independent samples from each well in which a specific constituent riggers
the initial test and then comparing these samples against the non-parametric prediction limit for that

parameter.

Because more independent data is added to the overall testing procedure, retesting of
additional samples, in general, enables one to make more powerful and more accurate
determinations of possible contamination. Retesting does, however, involve a rade-off. Because
the power of the test increases with the number of resamples, one must decide how quickly
resamples can be collected to ensure 1) quick identification and confirmation-of contamination and
yet, 2) the statistical independence of successive resamples from any particular well. Do not forget
that the performance of a non-parametric retesting strategy depends substantially on the
independence of the data from each well.

Two basic approaches to non-paramerric retesting have been suggested by Gibbons (1990
and 1991b). Both smategies define the upper Prediction limit for each designated parameter to be
the maximum vaiue of that constituent in the set of background data. Consequently, the
background wells used to construct the limits must be uncontaminated. After the Prediction limits
have been caiculated, one sample is collected from each downgradient well in the netwark. If any
sample constituent value is greater than its upper prediction limit, the initial test is "riggered” and
one or more resampiles must be collected at that downgradient well on the constituent for further
testing.

At this point, the similarity between the two approaches ends. In his 1990 article, Gibbons
computes the probability that at least one of m independent samples taken from each of k
downgradient wells will be below (i.e., pass) the prediction limit. The m samples include both the
initial sample and (m-1) resamples. Because retesting only occurs when the initial well sample fails
the limit, a given well fails the overall test (initial comparison plus retests) only if all (m-1)
resamples are above the prediction limit. If any resample passes the prediction limit, that well is
regarded as showing no significant evidence of contamination.

Initially, this first strategy may not appear to be adequately sensitive to mild contamination at
aﬁwn@wmﬁe&tmlhmpmwmmlammbmwwmm
initial sample fails the upper prediction limit. If the initial sample is above the background
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maximum and one of the resamples is also above the prediction limit, the well can still be classified
as "clean" if the other resample is below the prediction limit. Statistical power simulations (see
Appendix B), however, suggest that this strategy will perform adequately under a number of
monitoring scenarios. Stll, EPA recognizes that a retesting strategy which might classify a well as
"clean” when the initial sample and a resample both fail the upper Predicton limit could offer
problematic implications far permit writers and enforcement personnel.

A more stringent approach was suggested by Gibbons in 1991. In that article (1991b),
Gibbons computes, as "passing behavior," the probability that all but one of m samples taken from
each of k wells pass the upper prediction limit. Under this definition, if the initial sample fails the
upper Prediction limit, all (m-1) resamples must pass the limit in order for well to be classified as
“clean” during that testing period. Consequently, if any single resample falls above the background
maximum, that well is judged as showing significant evidence of contamination.

Either non-parametric retesting approach offers the advantage of being extremely easy to
impiement in field testing of a large downgradient well network. In practice, one has only to
determine the maximum background sample to establish the upper prediction limit against which all
other comparisons are made. Gibbons' 1991 retesting scheme offers the additional advantage of
requiring less overall sampling at a given well to establish significant evidence of contamination.
Why? If the testing procedure calls for, say, two resamples at any well that fails the initial
prediction limit screen, retesting can end whenever either one of the two resamples falls above the
prediction limit That is, the well will be designated as potentially contaminated if the first resampie
fails the prediction limit even if the second resampie has not yet been collected.

In both of his papers, Gibbons offers tables that can be used to compute the overall network-
wide false positive rate, given the number of background samples, the number of downgradient
comparisons, and the number of retests for each comparison. It is clear that there is less flexibility
in adjusting a non-parametric as opposed to a parametric prediction limit to achieve a cermin Type |
error rate. In fact, if only a cerain number of retests are feasible a: any given well (e.g., in order
to mainmin independence of successive samples), the only recourse to maintain a low false positive
rate is to collect a larger number of background sampies. In this way, the inability 1o make
parametric assumptions about the data illustrates why non-parametric tests are on the whole less

cfficient and less powerful than their parametric counterparts.

Unforunately, the power of these non-parametric retesting strategies is not explored in detail
by Gibbons. To compare the power of both Gibbons' strategies against the EPA Reference Power
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Curve, Normally dlsmbmed data were simulated for several combxnanons of numbers of
background samples and downgradient wells (again, if multiple constituents are being tested, the
number of wells in the simulations may be regarded as the number of constituent-well
combinations). Up 10 three resamples were allowed in the simulations for comparative purposes.
EPA recognizes, however, that it will be feasible in general to collect only one or two independent
resamples from any given well. Power curves representing the results of these simulations are
given in Appendix B. For each scenario, the EPA Reference Power Curve is compared with the
simulated powers of six different testing strategies. These strategies include collection of no
resamples, one resample, two resamples under Gibbons' 1990 approach (designated as A on the
curves) and his 1991 approach (labelled as B), and three resamples (under approaches A and B).
Under the one resample strategy, a potentially contaminated compliance well is designated as
"clean” if the resample passes the retest and “contaminated” otherwise.

The following table lists the best-performing strategies under each scenario. As with the use
of parametric intervals for retesting, the criteria for selecting the best-performing strategies required
1) an approximate 5% facility-wide false positive rate and 2) power equivalent 10 or better than the
EPA Reference Power Curve. Because Normal dats were used in these power simulations, more
realistically skewed data would likely result in greater advantages for the non-paramerric retesting
strategies over the EPA Reference test.

Exsminstion of the table and the power curves in Appendix B shows that the number of
background samples has an impartant effect on the recommended testing strategy. For instance,
with 8 background samples in a network of at least 20 wells, the best performing strategies all
involve collection of 3 resamples per "riggered” compliance well (EPA regards such a strategy as
impractical for permitting and enforcement purposes at most RCRA facilities). It teads to be true
that as the number of available background samples grows, fewer resampies are needed from each
potentially contaminated compliance well to0 maintain adequate power. If, as is expected, the
number of feasible, independent retests is limited, a facility operator may have to collect additional
background measurements in order to establish an adequate retesting srazegy.

0060076

74



G SQ
Draft 1/28/93 e
*284
NON-PARAMETRIC RETESTING STRATEGIES
S #BG
WELLS SAMPLES STRATEGY REFERENCE RATING

8 1 Resample ®
5 8 2 Resamples (A) Gibbons, 1990 L

16 1 Resampie g
16 2 Resamples (B) Gibbons, 1991 s

24 2 Resamples (B) Gibbons, 1991 *»

8 2 EEsampE (A) Gibbons, 1990 s

16 1 Resample .

20 16 2 Resamples (A) Gibbons, 1990 ®

24 1 Resample : s

24 2 Resamples (B) Gibbons, 1991 ¢

32 1 Resample *

32 2 Resamples (B) Gibbons, 1991 s
16 — 2 Resamples (A) ibbons, ?

50 24 1 Resample

24 2 Resamples (A) Gibbons, 1990 d

32 1 Resample b

100 16 ~2 Resamples (A) Gibbons, 1990 =
24 2 Resamples (A) Gibbons, 1990 L

32 1 Resample .

= =verygoodperfoxmance' * = good performance
6. OTHER TOPICS

Note:

6.1 CONTROL CHARTS

Control Charts are an alternative to Prediction limits for performing either intrawell
comparisons or comparisons to historically monitored background wells during detection
monitoring. Since the baseline parameters for a Control Chart are estimated from historical data,
this method is only appropriate for initially uncontaminated compliance wells. The main advantage
of a Control Chart over a Prediction limit is that a Control Chart allows data from a well to be
viewed graphically over time. Trends and changes in the concentration levels can be seen easily,
because all sample data is consecutively plotted on the chart as it is collected, giving the data
analyst an historical overview of the pattern of contamination. Prediction limits allow only point-
in-time comparisons between the most recent data and past information, making long-term wends
difficult w identify.

More generally, inrawell comparison methods climinate the need to worry about spatial
variability between wells in different locations. Whenever background data is compared to
coinplimeepointmeasmmems.thmisaﬁzkthnmysuﬁsﬁclny significant difference in
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concentration levels is due to spatial and/or hydrogéologica.l differences between the wells rather
than contamination at the facility. Because intrawell comparisons involve but a single well,
significant changes in the level of contamination cannot be atrributed to spatial differences between
wells, regardless of whether the method used is a Prediction limit or Control Chart

Of course, past observations can be used as baseline data in an intrawell comparison only if
the well is known to be uncontaminated. Otherwise, the comparison between baseline data and
newly collected samples may negate the goal in detection monitoring of identifying evidence of
contamination. Furthermore, without specialized modification, Control Charts do not efficiently
handle truncated data sets (i.e., those with a significant fraction of nondetects), making them
appropriate only for those constituents with a high frequency of occurrence in monitoring wells.
Conwol Charns tend to be most useful, therefare, for inorganic parameters (e.g., some metals and
geochemical monitaring parameters) that occur naturally in the ground water.

The steps to construct a Control Chart can be found on pp. 7-3 to 7-10 of the Interim Final
Guidance. The way a Control Chart works is as follows. Initial sample data is collected (from the
specific compliance well in an intrawell comparison or from background wells in comparisons of
compliance data with background) in order to establish baseline parameters for the chart,
specifically, estimates of the well mean and well variance. These samples are meant to characterize
the concentration levels of the uncontaminated well, before the onset of detection monitoring.
Since the estimate of well variance is pardcularly imporant, it is recommended that at least 8
samples be collected (say, over a year's time) 10 estimate the baseline parameters. Note that none
of these 8 or more sampiles is acually pioted on the chart.

As fumre samples are collected, the baseline parameters are used 10 standardize the data. At
cach sampling period, a standardized mean is computed using the formula below, where m
represents the baseline mean concentration and s represents the baseline standard deviation.

Z,=yn,(X-m)/s

A cumulative sum (CUSUM) for the ith period is also computed, using the formula S; = max({0,
(Zi-k)+S;.1), where Z; is the standardized mean for that period and k represents a pre-chosen
Control Chart parameter.

Once the data have been standardized and plotted, a Control Chart is declared out-of-control
if the sample concentrations become oo large when compared to the baseline parameters. An out-
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of-control situation is indicated on the Control Chart when either the standardized means or
CUSUMs cross one of two pre-determined threshold values. These thresholds are based on the
rationale that if the well remains uncontaminated, new sample values standardized by the original
baseline parameters should not deviate substantially from the baseline level. If contamination does
occur, the old baseline parameters will no longer accurately represent concentration levels at the
well and, hence, the standardized values should significantly deviate from the baseline levels on the

Control Chart.

In the combined Shewhart-cumulative sum (CUSUM) Control Chart recommended by the
Interim Final Guidance (Section 7), the chart is declared out-of-control in one of two ways. First,
the standardized means (Z;) computed at each sampling period may cross the Shewhart control
limit (SCL). Such a change signifies a rapid increase in well concentration levels among the most
recent sample data. Second, the cumulative sum (CUSUM) of the standardized means may
become 100 large, crossing the "decision internal value” (h). Crossing the h threshold can mean
either a sudden rise in concentration levels or a gradual increase over a longer span of time. A
gradual increase or wend is particularly indicated if the CUSUM crosses its threshold but the
standardized mean Z; does not. The reason for this is that several consecutive small increases in Z;
will not wrigger the SCL threshold, but may migger the CUSUM threshold. As such, the Contol
Chart can indicate the onset of either sudden or gradual contamination at the compliance point.

As with other statistical methods, Control Charts are based on certain assumptions about the
sampie data. The first is that the data at an uncontaminated well (i.c., a well process that is "in
conmol”) are Normally distributed. Since estimates of the baseline parameters are made using
initially collected data, these data should be tested for Normality using one of the goodness-of-fit
techniques described earlier. Beter yet, the logarithms of the data should be tested first, © see if a
Lognormal model is appropriate for the concentration data. If the Lognormal model is not rejected,
the Control Chart should be constructed solely on the basis of logged data.

The methodology for Control Charts also assumes that the sample data are independently
distributed from a statistical standpoint. In fact, these charts can easily give misleading results if
the consecutive sample data are not independent. For this reason, it is important to design a
sampling plan so that distinct volumes of water are analyzed each sampling period and that
duoplicate sampie analyses are not treated are independent observations when constructing the
Control Chart.
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The final assumption is that the baseline parameters at the well reflect current background
concentration levels. Some long-term fluctuation in background levels may be possible even
though contamination has not occurred at a given well. Because of this possibility, if a Control
Chart remains "in control” for a long period of time, the baseline parameters should be updated to
include more recent observations &s background data. After all, the original baseline parameters
will often be based only on the first year's date. Much better estimates of the true background
mean and variance can be obmained by including more data at a later dime.

To update older background data with more recent samples, a two-sample t-test can be run to
compare the older concentration levels with the concentrations of the proposed update samples. If
the t-test does not show a significant difference at the 5 percent significance level, proceed to re-
estimate the baseline parameters by including mare recent data. If the t-test does show a significant
difference, the newer data should not be characterized as background unless some specific factor
can be pinpointed explaining why background levels on the site have naturally changed.

EXAMPLE 18
Construct a control char for the 8 months of data coliected below.
n=27 ppb
o=25 ppb
Nickr.l Concentration (ppb)
Month Sample 1 Sample 2
1 18.3 22.6
2 41.1 27.8
3 17.5 18.1
4 15.7 31.5
5 37.2 32.4
6 25.1 325
7 19.9 27.5
8 99.3 64.2
SOLUTION

Step 1.  The three parameters necessary to construct a combined Shewhart-CUSUM chart are
b=5, k=1, and SCL=4.5 in units of standard deviation (SD).

Step 2. List the sampling periods and monthly means, as in the following table.

000080



‘n

Draft 1/28/93
- %284
Month T Mean (ppb) Z Z-k S;
1 1 19.0 -0.45 -1.45 0.00
2 2 345 0.42 -0.58 0.00
3 3 17.8 -0.52 -1.52 0.00
4 4 23.6 -0.19 -1.19 0.00
5 5 34.8 0.44 -0.56 0.00
6 6 28.8 0.10 -0.90 0.00
7 7 23.7 -0.19 -1.19 0.00
8 8 81.8 3.10 2.10 2.10
Step 3. Compute the standardized means Z; and the quantities S;. List in the table above. Each
S; is computed for consecutive months using the formula on p. 7-8 of the EPA guidance
document.
S1 = max {0, -1.45 + 0) = 0.00
S2 = max {0, -0.58 + 0} =
S3 =max {0,-1.52 + 0} =
S4 =max {0,-1.19 + 0) = 0.00
S5 =max {0, -0.56 + 0} =
S¢ = max {0, -0.90 + 0) = 0.00
S7 = max {0, -1.19 + 0} = 0.00
Sg = max {0, 2.10+ 0} = 2.10
Step 4. Plot the control chart as given below. The combined chart indicates that there is no

evidence of contamination at the monitoring facility because neither the standardized
mean nor the CUSUM statistic exceeds the Shewhart control limits for the months

examined.
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CONTROL CHART FOR NICKEL DATA
MUs27ppb SIGMA = 25ppb

" O

SCL

= N W ~n

—_——z

{ o { : —— CUSUM

-1

STANDARDIZED CONCENTRATION

.2 1 1 — 1

SAMPLING PERIOD

Note: In the above Control Chart, the CUSUMs are compared to threshold h, while the
standardized means (Z) are compared to the SCL threshold.

6.2 OUTLIER TESTING

Formal testing for outliers should be done only if an observation seems particularly high (by
. orders of magnitde) compared to the rest of the data set. If a sample value is suspect, one should
run the outlier test described on pp. 8-11 to 8-14 of the EPA guidance document. It should be
cautioned, however, that this outlier test assumes that the rest of the data values, except for the
suspect observation, are Normally distributed (Barnert and Lewis, 1978). Since Lognormally
distributed measurements often contain one or more values that appear high relative to the rest, it is
recommended that the outlier test be run on the logarithms of the data instead of the original
observations. That way, one can avoid classifying a high Lognormal measurement as an outlier
jmtbecauseﬂttestissmnpﬁonsmﬁohmd.

If the test designates an observation as a statistical outlier, the sample should not be treated as
such until a specific reason for the abnormal measurement can be determined. Valid reasons may,
for example, include contaminated sampling equipment, laboratory contamination of the sample, or
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errors in transcription of the data values. Once a specific reason is documented, the sample should
be excluded from any further smristical analysis. If a plausible reason cannot be found, the sample
should be treated as a true but exmeme value, 0ot to be excluded from further analysis.

EXAMPLE 19

The table below contains data from five wells measured over a 4-month period. The value
7066 is found in the second month at well 3. Determine whether there is statistical evidence that
this observation is an outlier.

Carbon Terrachloride Concentration (ppb)

Well 1 Well2 Well 3 Well 4 Well §
.69 302 16.2 199 275
3.25 35.1 7066 4.6 6.5 -
73 15.6 350 75.4 59.7
12.1 13.7 70.14 57.9 68.4
SOLUTION

Step 1. Take logarithms of each observation. Then order and list the logged concentrations.
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Concentration Logged
Order (ppb) Concentration

1 1.69 0.525
2 3.25 1.179
3 6.5 1.872
4 7.3 1.988
5 12.1 2.493
6 13.7 2.617
7 15.6 2.747
8 16.2 2.785
9 35.1 3.558
10 41.6 3.728
11 579 4.059
12 59.7 4.089
13 68.4 4.225
14 70.1 4.250
15 75.4 4.323
16 199 5.293
17 275 5.617
18 302 5.710
19 350 : 5.878
20 7066 8.863

Step 2.  Calculate the mean and SD of all the logged measurements. In this case, the mean and
SD are 3.789 and 1.916, respectively.

Step 3.  Calculare the outlier test statistic T2g as
X - X 8863-3.789

Ty = b= = 2.648.
» SD 1916

Step 4. Compare the observed statistic T2g with the critical value of 2.557 for a sample size
n=20 and a significance level of 5 percent (taken from Tabie 8 on p. B-12 of the Interim
Final Guidance). Since the observed value T20=2.648 exceeds the critical value, there is
significant evidence that the largest observation is a statistical outlier. Before excluding
this value from further analysis, a valid explanation for this unusually high value should
be found. Otherwise, treat the outlier as an exueme but valid concentration

measurement.

000084



7284

REFERENCES

Aitchison, J. (1955) On the distribution of a positive random variable having a discrete probability
mass at the origin. Journal of American Statistical Association, 50(272): 901-8.

Bamner, V. and Lewis, T. (1978) Qutliers in statistical daga. New York: John Wiley & Sons.

Cohen, A.C., Jr. (1959) Simplified estimators for the normal distribution when samples are single
censored or truncated. Technomerrics, 1:217-37.

Cox, D.R. and Hinkley, D.V. (1974) Theoretical statistics. London: Chapman & Hall

~ Davis, C.B. and McNichols, RJ. (1987) One-sided intervals for at least p of m observations from a
normal population on each of r future occasions. Technomerrics, 29(3):359-70.

Fxllibeui JJ. (1975) The probability plot correlation coefficient test for normality. Technomerrics,
7:111-7.

Gan, F.F. and Koehler, K.J. (1990) Goodness-of-fit tests based on p-p probability plots.
Technometrics, 32(3):289-303.

Gayen, AK. (1949) The distribution of "Student's" t in random samples of any size drawn from non-
normal universes. Biomerrika, 36:353-69.

Gibbons, R.D. (1987a) Statistical prediction intervals for the evaluation of ground-water quality.
Ground Water, 25(4):455-65.

Gibbons, RD. (1987b) Statistical models for the analysis of volatle organic compounds in waste
disposal sites. Ground Water, 25(5):572-80. .

Gibbons, R.D. (1990) A general sttistical procedure for ground-water detection monitoring at waste
disposal facilities. Ground Wazer, 28(2):235-43.

Gibbons, R.D. (1991a) Statistical tolerance limits for ground-water monitoring. Ground Water,
29(4):563-70.

Gibbons, RD. (1991b) Some additional nonparamerric prediction limits for ground-water detection
monitoring at waste disposal facilities. Ground Water, 29(5):729-36.

Gilliom, R.J. and Helsel, D.R. (1986) Estimation of distributional parameters for censored trace level
water quality data: pant 1, estimation techniques. Water Resources Research, 22(2):135-46.

Guuman, L. (1970) Statistical tolerance meions: classical and bavesian. Darien, Connecticut: Hafner
Publishing.

BT >+ 000085

_ Foster « -2
0 patahurgn, PA 1529



7284
Hahn, GJ. (1970) Statistical intervals for a normal populaton: part 1, tables, examples, and
applications. Journal of Quality Technology, 2(3):115-25.

Lehmann, EL. (1975) Nonparametrics: statistical methods based on ranks. San Francisco: Holden-
Day, Inc.

Madansky, A. (1988) Prescriptions for working siausticians. New York: Springer-Verlag. -

McBean, E.A. and Rovers, F.A. (1992) Estimation of the probability of exceedance of contaminant
concenmrations. Ground Water Monitoring Review, Winter, 115-9.

McNichols, RJ. and Davis, C.B. (1988) Statistical issues and problems in ground water detection
monitoring at hazardous waste facilities. Ground Water Monitoring Review, Fall.

Miller, R.G., Jr. (1986) Bevond ANOVA, basics of applicd statistics. New York: John Wiley &

Sons.

Milliken, G.A. and Johnson, D.E. (1984) Analysis of messy data: volume 1, designed experiments.
Belmont, California: Lifetime Learning Publicatons.

On, W.R. (1990) A physical explanation of the lognormality of pollutant concentrations. Journal of
Air Waste Managemen: Association, 40:1378-83.

Ryan, T.A., Jr. and Joiner, B.L. (1990) Nomial probability plots and tests for normality. Minitab
Suatistical Software: Technical Reports, November, 1-1 to 1-14.

Shapiro, S.S. and Wilk, M.B. (1965) An analysis of variance test for normality (complete sampies).
Biomerrika, 52:591-611.

Shapiro, S.S. and Francia, R.S. (1972) An approximate analysis of variance test for normality.
Journal of American Statistical Associanon, 67(337):215-6.

Zacks, S. (1970) Uniformly most accurate upper tolerance limits for monotone likelihood ratio
fumhes6 ilies of discrete distributions. Jowrnal of American Statistical Association, 65(329):307-
16.

060086



TABLE A-l. 7 2 8
: 4
COEFFICIENTS {AN.].}} FOR W TEST OF
NORMALITY, FOR N=2(1)50

iia 2 3 4 5 6 7 8 9 10

1 07071 07071 06872 0.6646 06431 06233 06052 05888 05739

2 - 0000 1677 2413 2806 3031 3164 3244 329)

3 - - - 0000 0875  .1401  .1743 1976 2141

‘ - - - — - 0000  .0561 0947  .1224

5 - - — - - — - 0000  .0399

i/n 11 12 13 14 18 16 17 18 19 20
1 05601 05475 05359 05251 05150 05056 04968 04886 04808 04734
2 3315 3325 3325 3318 3306 3290 3273 3253 3232 321
3 2260 2347 2412 2460 2495 2521 2540 2553 2561 2565
4 1429 1586 1707  .1802  .I878  .1939  .1988 2027 2059 2085
5 0695 0922  .1099  .1240  .1353  .1447  .1524  .1587  .1641  .1686
6 00000 0.0303 00539 00727 00880 01005 01109 01197 0.1271 01334
7 — -~ 0000 .0240 0433 0593 0725 0837 .0932  .1013
8 — —_ - - 0000 0196 .0359 0496 0612 .0711
9 — - - - - - 0000 0163 0303  .0422
10 - — — - - - - - 0000 0140
i/n 21 22 23 24 25 26 27 28 29 30
1 04643 04590 04542 04493 04450 04407 04366 04328 04291 04254
2 3185 3156 3126 3098 3069 3043 3018 2992 2968 2944
3 2578 2571 2563 2554 2543 2533 252 2510 2499 2487
4 2119 2131 2139 2145 2148 2151 2152 2151 2150 2148
5 1736 1764 1787 1807  .1822  .1836  .1848  .1857  .1864  .1870
6 0.1399 0.1443 0.480 0.1512 0.1539 0.1563 0.1584 0.1601 0.616 0.1630
7 1092 1150 1201 1245 1283 1316  .1346  .1372  .1395  .1415
8 0804 0878 0941 0997 .1046 .1089 1128  .1162 1192  .1219
9 0530 0618 069 0764 0823 0876 .0923 0965 .1002  .1036
10 0263 0368 0459 0539 0610 0672 0728 OTI8 082  .0862
11 00000 0012 0028 00321 00403 00476 00540 00598 0.0650 0.0697
12 - —_ 0000 0107 0200 (284 0358 0424 0483  .0537
13 - - - - 0000 0094 0178 0253 0320  .038
14 - - — - - - 0000 0084 0159 .0227
15 - - - - - - - - 0000 0076
iln 31 32 33 34 3s 36 37 38 39 40
1 04220 04188 04156 04127 0409 04068 04040 04015 03989  0.3964
2 2921 2898 2876 2854 2834 2813 2794 2T4 2155 2T3T
3 2475 2463 2451 2439 2427 2415 2403 2391 2380 2368
v 2145 2141 2137 2132 2127 2121 2116 2110 2104 2098
5 1874 1878 1880 1882  .1883  .1883  .1883  .1881  .1880  .1878
6 0.1641 01651 01660 01667 0.673 0.1678 0.683 01686 01689 0.1691
7 433 1M9 1463 1475 1487 1496 1503 1513 .1520  .1526
3 1243 1265 1284 .1301  .I317 1331 1344 1356 1366  .1376
9 J066 1093 1118 1140 1160 179 1196 1211 1225 1237
10 0899 0931 0961 0988  .1013  .1036 .105  .107S  .1092  .1108
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TABLE A-1. (CONTINUED) -
: b 7284
COEFFICIENTS {AN.]+1} FOR W TEST OF
NORMALITY, FOR N=2(1)50

i/n 31 32 33 34 35 36 3?7 38 39 40
11 00739 00777 0.0812 00844 00873 0.0900 00924 0.0947 0.0967 0.0986
12 0585 0629 0669 0706 0739 0770 0798 0824 0848 0870
13 0435 0485 0530 0572 0610 0645 0677 0706 0733 0759
14 0289 0344 0395 0441 0484 0523 0559 0592 0622 0651
15 ‘0148 0206 0262 0314 0361 0408 04 0481 0515 0546
16 00000 0.0068 00131 0.01837 00239 0.0287 0.0331 0.0372 0.0409 0.0444
17 — -— 0000 0062 0119 0172 0220 0264 0305 0343
18 — -— -— — 0000 0057 0110 0158 0203 0244
19 — — - — — —— 0000 .0053 0101 .0146
2 o ——— — —— — — L e — .m -w9
i/n 41 42 43 44 48 46 47 48 49 50
1 03940 03917 03894 03872 0380 03830 03808 03789 03770 03751
2 2719 2701 2684 2667 2651 2635 2620 2604 2589 2574
3 2357 2345 2334 2323 ‘2313 2302 2291 2281 27 2260
4 2091 2085 2078 2072 2065 2058 2052 .2045 2038 2032
s .1876 1874 1871 .1868 .1865 1862 1859 .1855 1851 1847
6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 1531 .1535 1539 1542 154§ 1548 .1550 1551 1553 1554
8 1384 .1392 1398 1405 1410 1415 1420 1423 1427 -.1430
9 1249 .1259 1269 1278 .1286 1293 .1300 1306 1312 JA317
10 1123 1136 1149 .1160 1170 1180 1189 1197 1205 J212
11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 089 0909 0927 0943 0959 0972 0986 0998 .1010 .1020
13 o2 0804 0824 0842 0860 0876 0892 0906 0919 0932
14 0677 0701 OT24 0745 0775 0785 0801 0817 0832 0846
15 0575 0602 0628 0651 0673 L0694 0713 0731 0748 0764
16 00476 00506 00534 00560 00584 00607 00628 0.0648 0.0667 0.0685
17 0371 0411 0442 0471 0497 0522 0546 0568 0588 0608
18 0283 0318 0352 0383 0412 0439 465 0489 0511 0532
19 0188 0227 0263 0296 0328 0357 0385 0411 0436 0459
20 0094 0136 0175 0211 0245 0277 0307 0335 0361 0386
21 00000 0.0045 00087 00126 00163 00197 00229 00259 00288 0.0314
22 — - 0000 0042 0081 0118 0153 0185 0215 0244
23 — — — — 0000  .0039 0076 0111 0143 0174
24 — — — - — — 0000 0037 007N 0104
28 — — — -_— — — — — 0000 0035
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TABLE A-2.

PERCENTAGE POINTS OF THE W TEST FOR N=3(1)50

n 0.01 0.05
3 0.753 0.767
4 .687 .748
5 .686 762
6 0.713 0.788
7 730 .803
8 749 818
9 764 .829
10 .781 , .842
11 0.792 0.850
12 .805 .859
13 814 .866
14 .825 874
15 .835 .881
16 0.844 0.887
17 .851 892
18 .858 .897
19 .863 901
20 : .868 .905
21 0.873 0.908
22 878 911
23 .881 914
24 .884 916
25 .388 918
26 0.891 0.920
27 894 923
28 .896 924
29 .898 926
30 .900 .927
31 0.902 0.929
32 904 930
33 .906 931
34 908 933
- 35 910 ' - 934
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PERCENTAGE POINTS OF THE W TEST FOR N=3(1)50

n 0.01 0.05
36 0.912 0.935
37 914 936
38 916 .938
39 917 939
40 919 940
41 0.920 0.941
42 922 942
43 923 943
44 924 944
45 926 945
46 0.927 0.945
47 928 946
48 929 947
49 929 .947
50 930 947
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TABLE A-3.
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PERCENTAGE POINTS OF THE W’ TEST FOR N235

.01 .05
35 0.919 0.943
50 935 953
51 0.935 0.954
53 938 957
55 940 958
57 944 961
59 945 962
61 0.947 0.963
63 947 964
65 948 965
67 950 966
69 951 966
71 0.953 0.967
73 956 968
75 956 969
77 957 969
79 957 970
81 0.958 0.970
83 960 971
85 961 972
87 961 972
89 961 972
91 0.962 0.973
93 963 973
95 965 974
97 965 975
99 967 976
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PERCENT POINTS OF THE NORMAL PROBABILITY PLOT

CORRELETION COEFFICIENT FOR N=3(1)50(5)100

n .01 .025 .05
3 869 872 879
4 822 845 868
5 822 855 879
6 835 868 890
7 847 876 .899
8 859 .886 905
9 868 893 912
10 876 .900 917
11 883 906 922
12 889 912 926
13 895 917 931
14 901 921 934
15 907 925 937
16 912 928 940
17 912 931 942
18 919 934 945
19 923 937 947
20 925 939 950
21 928 942 952
22 930 944 954
23 933 947 955
24 936 949 957
25 937 950 958
26 939 952 959
27 941 953 1960
28 943 955 962
29 945 956 962
30 947 957 964
3] 948 958 965
32 949 959 966
33 950 960 967
34 951 960 967
35 952 961 968
36 953 962 968
37 955 962 969
38 956 964 970
39 957 965 971
40 958 966 972
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(CONTINUED)
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PERCENT POINTS OF THE NORMAL PROBABILITY PLOT
CORRELETION COEFFICIENT FOR N=3(1)50(5)100

n .01 .025 .08
41 958 967 973
42 959 .967 973
43 959 .967 973
44 960 .968 974
45 961 969 974
46 962 969 974 -
47 963 970 975
48 963 970 975
49 964 971 977
50 965 972 978
55 967 974 980
&0 970 976 981
65 972 977 982
70 974 978 983
75 975 979 984
80 976 980 985
85 977 981 985
90 978 982 985
95 979 983 986
100 981 984 .987

A7
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TABLE A-.S.

stﬁzgé
VALUES OF LAMBDA FOR COHEN'S METHOD O
Percentage of Non-detects

vy | .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
.01 [.0102 .0530 .1111 .1747 .2443 .3205 .4043 .4967 5989 7128 .8403
.05 1.0105 .0547 .1143 1793 .2503 .3279 4130 .5066 .6101 1252 .8540
.10 ].0110 .0566 .1180 .1848 .2574 .3366 .4233 .5184 6234 .7400 .8703
.15 [.0113 .0584 .1215 .1898 .2640 .3448 .4330 .5296 .6361 7542 .8860
.20 |.0116 .0600 .1247 .1946 2703 .3525 .4422 .5403 .6483 7678 9012
.25 |.0120 .0615 .1277 .1991 .2763 .3599 .4510 .5506 .6600 .7810 9158
.30 |.0122 .0630 .1306 .2034 .2819 .3670 .4595 .5604 6713 7937 .9300
.35 |.0125 .0643 .1333 .2075 .2874 .3738 .4676 .5699 .6821 - .8060 9437
.40 |.0128 .0657 .1360 .2114 .2926 .3803 4755 .5791 .6927 8179 9570
.45 |.0130 .0669 .1385 .2152 .2976 .3866 .4831 .5880 .7029 .8295 .9700
.50 |.0133 .0681 .1409 .2188 .3025 .3928 .4904 .5967 7129 .8408 .9826
55 1.0135 .0693 .1432 .2224 .3073 .3987 .4976 .6051 7225 .8517 .9950
.60 |.0137 .0704 .1455 .2258 .3118 .4045 .5046 .6133 7320 8625 1.0070
.65 |.0140 .0715 .1477 .2291 .3163 .4101 5114 .6213 7412 8729 10188
.70 |.0142 .0726 .1499 .2323 .3206 .4156 .5180 .6291 7502 .8832 1.0303
.75 |.0144 .0736 .1520 .2355 .3249 .4209 5245 .6367 7590 8932 1.0416
.80 (.0146 .0747 .1540 .2386 .3290 .4261 5308 .6441 7676 9031 1.05°°

.85 ].0148 .0756 .1560 .2416 .3331 .4312 5370 .6515 7761 9127  1.06.
.90 |.0150 .0766 .1579 .2445 .3370 .4362 5430 .6586 7844 9222 1.0743
95 |.0152 .0775 .1598 .2474 .3409 .4411 5490 .6656 7925 9314  1.0847
1.00 |.0153 .0785 .1617 .2502 .3447 .4459 .5548 .6725 .8005 9406 1.0951
1.05 |.0155 .0794 .1635 .2530 .3484 .4506 .5605 .6793 .8084 9496 1.1052
1.10 {.0157 .0803 .1653 .2557 .3521 .4553 .5662 .6860 8161 9584 1.11352
1.15 |.0159 .0811 .1671 .2584 .3557 .4598 5717 .6925 .8237 9671  1.1250
1.20 |.0160 .0820 .1688 .2610 .3592 .4643 .5771 .6990 8312 9756 1.1347
1.25 |.0162 .0828 .1705 .2636 .3627 .4687 .5825 .7053 .8385 9841 1.1443
1.30 |.0164 .0836 .1722 .2661 .3661 .4730 .5878 .7115 .8458 9924 1.1537
1.35 {.0165 .08B45 .1738 .2686 .3695 .4773 5930 .7177 .8529 1.0006 1.1629
1.40 |.0167 .0853 .1754 .2710 .3728 .4815 .5981 .7238 8600 1.0087 1.1721
1.45 |.0168 .0860 .1770 .2735 .3761 .4856 .6031 .7298 .8670 1.0166 1.1812
1.50 |.0170 .0868 .1786 .2758 .3793 .4897 .6081 .7357 8738 1.0245 1.1901
1.55 |.0171 .0876 .1801 .2782 .3825 .4938 .6130 .7415 .8806 1.0323 1.1989
1.60 |.0173 .0883 .1817 .2805 .3856 .4977 .6179 .7472 8873 1.0400 12076
1.65 |.0174 .0891 .1832 .2828 .3887 .5017 .6227 .7529 8939 1.0476 12162
1.70 |.0176 .0898 .1846 .2851 .3918 .50S5 .6274 .758S5 9005 1.0551 12248
1.75 |.0177 .0905 .1861 .2873 .3948 .5094 .6321 .7641 9069 1.0625 1.2332
1.80 |.0179 .0913 .1876 .2895 .3978 .5132 .6367 .7696 9133 1.0698 1.2415
1.85 |.0180 .0920 .1890 .2917 .4007 .5169 .6413 .7750 9196 1.0771 1.2497
1.90 |.0181 .0927 .1904 .2938 .4036 5206 .6458 .7804 9259 1.0842 12579
1.95 |.0183 .0933 .1918 .2960 .4065 .5243 .6502 .7857 9321 10913 12F"1
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TABLE A-5. (CONTINUED)

VALUES OF LAMBDA FOR COHEN'S METHOD

~ Percentage of Non-detects
.01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
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0184 .0940 .1932 .2981 .4093 .5279 .6547 .7909 9382 1.0984  1.2739
0186 .0947 .1945 .3001 4122 .5315 .6590 .7961 9442 11053 1.2819
0187 .0954 .1959 .3022 .4149 .5350 .6634 .8013 9502 1.1122  1.2897
0188 .0960 .1972 .3042 .4177 .5385 .6676 .8063 9562 1.1190 1.2974
0189 .0967 .1986 .3062 .4204 .5420 .6719 .8114 9620 1.1258 1.3051
0191 .0973 .1999 .3082 .4231 .5454 .6761 .8164 9679 1.1325 1.3127
0192 .0980 .2012 .3102 .4258 .5488 .6802 .8213 9736 1.1391  1.3203
0193 .0986 .2025 .3122 .4285 .5522 .6844 .8262 9794 1.1457 1.3278
0194 0992 .2037 .3141 4311 .5555 .6884 .8311 9850 1.1522  1.3352
0196 .0998 .2050 .3160 .4337 .5588 .6925 .8359 9906 1.1587  1.3425

0197 .1005 .2062 .3179 .4363 .5621 .6965 .8407 9962 1.1651  1.3498

0198 .1011 .2075 .3198 .4388 .5654 .7005 .8454 1.0017 1.1714 1.3571 -
0199 .1017 .2087 .3217 .4414 5686 .7044 .8501 1.0072 1.1777 1.3642
0201 .1023 .2099 .3236 .4439 .5718 .7083 .8548 1.0126 1.1840 1.3714
0202 .1029 .2111 .3254 .4464 5750 .7122 .8594 1.0180 1.1902 1.3784
0203 .1035 .2123 .3272 .4489 .5781 .7161 .8639 1.0234 1.1963 1.3854
.0204 .1040 .2135 .3290 .4513 .5812 .7199 .8685 1.0287 1.2024 1.3924
0205 .1046 .2147 .3308 .4537 .5843 .7237 .8730 1.0339 12085 1.3993
0206 .1052 .2158 .3326 .4562 .5874 .7274 .8775 1.0392 1.2145 1.4061

0207 .1058 .2170 .3344 4585 .5905 .7311 .8819 1.0443 12205 1.4129
.0209 .1063 .2182 .336]1 .4609 .5935 .7348 .8863 1.0495 12264 1.4197
0210 .1069 .2193 .3378 .4633 .5965 .7385 .8907 1.0546 1.2323 1.4264
0211 .1074 2204 3306 4656 5995 .7422 .8950 1.0597 1.2381 1.4330
0212 .1080 .2216 .3413 .4679 .6024 .7458 .8993 1.0647 12439 1.4396
0213 .1085 2227 .3430 .4703 .6054 .7494 9036 1.0697 12497 1.4462
0214 .1091 2238 .3447 4725 .6083 .7529 9079 = 1.0747 12554 1.4527
0215 .1096 .2249 .3464 4748 .6112 .7565 .9121 1.0796 1.2611 1.4592
0216 .1102 .2260 .3480 .4771 .6141 .76 9163 1.0845 1.2668 1.4657
0217 .1107 2270 .3497 4793 .6169 .7635 9205 1.0894 12724 1.4720
0218 .1112 .2281 .3513 .4816 .6197 .7670 9246 1.0942 12779 1.4784

0219 .1118 .2292 .3529 4838 .6226 .7704 9287 1.0990 1.2835 1.4847
0220 .1123 .2303 .3546 .4860 .6254 .7739 9328 1.1038 12890 1.4910
0221 .1128 .2313 .3562 .4882 .6282 .7773 9369 1.1086 1.2945 1.4972
0222 .1133 .2324 .3578 .4903 .6309 .7807 .9409 1.1133 12999 1.5034
0223 .1138 2334 .3594 .4925 .6337 .7840 9449 1.1180 1.3053 1.5096
0224 .1143 2344 .3609 4946 .6364 .7874 .9489 1.1226 13107 1.5157
0225 .1148 2355 .3625 .4968 .6391 .7907 .9529 1.1273 13160 15218
0226 .1153 2365 .3641 .4989 .6418 .7940 9568 1.1319 13213 1.5279
0227 .1158 .2375 .3656 5010 .6445 .7973 .9607 1.1364 13266 1.5339
0228 .1163 .2385 .3672 5031 .6472 .8006 .9646 1.1410 13318 1.5399
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Percentage ol Non-detects

v | .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
4.00 |.0229 .1168 .2395 .3687 .5052 .6498 .8038 .9685 1.1455 13371  1.5458
405 |.0230 .1173 2405 3702 5072 .6525 .8070 9723 1.1500 13423 1.5518
410 | 0231 .1178 2415 3717 5093 .6551 .8102 .9762 1.1545 13474 15577
415 |0232 .1183 2425 3732 5113 .6577 .8134 9800 1.1590 13526 1.5635
420 |.0233 1188 2435 3747 5134 6603 .8166 .9837 1.1634 13577 1.5693
425 |.0234 .1193 2428 3762 5154 .6629 8198 9875 1.1678 13627 1.5751
430 |.0235 .1197 2454 3777 5174 6654 8229 9913 11722 13678 1.5809
435 |.0236 .1202 2464 .3792 5194 .6680 .8260 .9950 1.1765 1.3728  1.5866
4.40 |.0237 .1207 .2473 .3806 .5214 .6705 .8291 .9987 1.1809 13778 1.5924
4.45 |.0238 .1212 2483 .3821 5234 .6730 .8322 1.0024 1.1852 13828 1.5980
4.50 |.0239 .1216 .2492 .3836 .5253 .6755 .8353 1.0060 1.1895 1.3878  1.6037
4.55 |.0240 .1221 2502 .3850 .5273 .6780 .8384 1.0097 1.1937 1.3927  1.6093
4.60 |.0241 .1225 2511 .3864 .5292 .6805 .8414 1.0133 1.1980 13976 1.6149
4.65 |.0241 .1230 2521 .3879 5312 .6830 .8445 1.0169 12022 14024 1.6205
470 |.0242 1235 2530 .3893 .5331 .6855 .8475 1.0205 12064 14073 1.6260
475 |.0243 (1239 2539 3907 5350 .6879 .8505 1.0241 12106 14121 1.6315
4.80 |.0244 .1244 2548 .3921 5370 .6903 .8535 1.0277 12148 14169 1.6370
4.85 |.0245 .1248 2558 .3935 5389 .6928 .8564 10312 12189 14217 1.642
490 |.0246 .1253 2567 .3949 5407 .6952 .8594 10348 12230 14265 1.6479
495 |.0247 .1257 .2576 .3963 .5426 .6976 .8623 1.0383 12272 14312 1.6533
500 |.0248 .1262 .2585 .3977 .5445 .7000 .8653 1.0418 12312 14359  1.6587
505 |.0249 .1266 .2594 .3990 .5464 7024 .8682 1.0452 12353 1.4406 1.6641
5.10 |.0249 .1270 2603 .4004 .5482 .7047 .8711 10487 12394 14453 1.6694
5.15 |.0250 .1275 2612 .4018 5501 .7071 .8740 1.0521 12434 14500 1.6747
5.20 |.0251 .1279 2621 .4031 5519 7094 .8768 1.0556 12474 14546 1.6800
525 |.0252 .1284 2629 .4045 .5537 .7118 .8797 1.0590 12514 14592 16853
5.30 |.0253 .1288 .2638 .4058 .5556 .7141 .8825 1.0624 12554 14638  1.6905
535 |.0254 .1292 .2647 .4071 5574 .7164 .8854 1.0658 12594 14684 1.6958
5.40 |.0255 .1296 .2656 .4085 .5592 .7187 .8882 1.0691 12633 14729 1.7010 .
545 |.0255 .1301 .2664 .4098 .5610 .7210 .8910 1.0725 12672 14775 1.7061
5.50 |.0256 .1305 .2673 .4111 .5628 .7233 .8938 1.0758 12711 14820 1.7113
5.55 |.0257 .1309 .2682 .4124 .5646 .7256 .8966 1.0792 12750 14865 17164
560 |[.0258 .1313 2690 .4137 5663 .7278 .8994 1.0825 12789 14910 17215
5.65 |.0259 .1318 .2699 .4150 .5681 .7301 .9022 1.0858 12828 1.4954 17266
570 |.0260 .1322 2707 .4163 .5699 .7323 9049 1.0891 12866 14999 17317
575 |.0260 .1326 2716 .4176 .5716 .7346 9077 1.0924 12905 1.5043 1.7368
5.80 |.0261 .1330 .2724 .4189 .5734 .7368 9104 1.0956 12943 15087 17418
5.85 |.0262 .1334 2732 .4202 5751 .7390 9131 1.0989 12981 15131 1.7468
590 |.0263 .1338 2741 .4215 5769 .7412 9158 1.1021 13019 15175 1.7518
595 |.0264 .1342 2749 .4227 5786 .7434 9185 1.1053 13057 15218 1.756®
6.00 |.0264 .1346 .2757 .4240 5803 .7456 9212 1.1085 13094 15262 176
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TABLE A-6. | n» 7284

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE
NON-PARAMETRIC UPPER TOLERANCE LIMITS

N B(maximum) B(2nd largest)
1 5.0 o
2 224 2.6
3 36.8 13.6
4 47.3 24.8
5 549 34.2
6 60.7 41.8
7 65.2 48.0
8 68.8 53.0
9 71.7 57.0

10 74.1 60.6

11 76.2 63.6

12 77.9 66.2

13 79.4 68.4

14 80.7 70.4

15 81.9 72.0

16 82.9 73.6

17 83.8 75.0

18 84.7 76.2

19 854 77.4

20 86.1 78.4
21 86.7 79.4
22 87.3 80.2
23 87.8 81.0
24 88.3 81.8
25 88.7 82.4
26 89.1 83.0
27 89.5 83.6
28 899 84.2
29 90.2 84.6
30 90.5 85.2
31 90.8 85.6
32 91.1 86.0
33 91.3 86.4
34 91.6 86.8
35 91.8 87.2
36 92.0 87.4
37 92.2 87.8
38 92.4 88.2
39 926 88.4
40 92.8 88.6
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TABLE A<6. (CONTINUED) - 7284

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE
NON-PARAMETRIC UPPER TOLERANCE LIMITS

N B(maximum) B(2nd largest)
41 93.0 89.0
42 93.1 89.2
43 - 93.3 89.4
44 93.4 89.6
45 93.6 89.8
46 93.7 90.0
47 93.8 90.2
48 93.9 90.4
49 94.1 90.6
50 94.2 90.8
55 94.7 91.6
60 95.1 92.4
65 95.5 93.0
70 95.8 93.4
75 96.1 93.8
80 96.3 94.2
85 96.5 94.6
9% 96.7 94.8
95 96.9 95.0

100 97.0 95.4

060098
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TABLE A-7. 7 2
" 84
CONFIDENCE LEVELS FOR NON-PARAMETRIC
PREDICTION LIMITS FOR N=1(1)100
NUMBER OF FUTURE SAMPLES
N k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
1 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1
2 66.7 50.0 40.0 33.3 28.6 25.0 22.2 20.0
3 75.0 60.0 50.0 429 37.5 333 30.0 27.3
4 80.0 66.7 57.1 50.0 4.4 40.0 36.4 333
5 83.3 71.4 62.5 55.6 50.0 45.5 41.7 38.5
6 85.7 75.0 66.7 60.0 - 54.5 50.0 46.2 42.9
7 87.5 77.8 70.0 63.6 583 53.8 50.0 46.7
8 88.9 80.0 72.7 66.7 61.5 57.1 533 50.0
9 90.0 81.8 75.0 69.2 64.3 60.0 56.3 52.9
10 90.9 83.3 76.9 71.4 66.7 62.5 58.8 55.6
11 91.7 84.6 78.6 73.3 68.8 64.7 61.1 57.9
12 92.3 85.7 80.0 75.0 70.6 66.7 63.2 60.0
13 92.9 86.7 81.3 76.5 72.2 68.4 65.0 61.9
14 93.3 87.5 82.4 77.8 73.7 70.0 66.7 63.6
15 93.8 88.2 83.3 78.9 75.0 71.4 68.2 65.2
16 94.1 88.9 84.2 80.0 76.2 72.7 69.6 66.7
17 94.4 89.5 85.0 81.0 77.3 73.9 70.8 68.0
18 94.7 90.0 85.7 81.8 78.3 75.0 72.0 69.2
19 95.0 90.5 86.4 82.6 79.2 76.0 73.1 70.4
20 95.2 90.9 87.0 83.3 80.0 76.9 74.1 71.4
21 95.5 91.3 87.5 840  80.8 77.8 75.0 72.4
22 95.7 91.7 88.0 84.6 81.5 78.6 75.9 73.3
23 95.8 92.0 88.5 85.2 82.1 79.3 76.7 74.2
24 96.0 92.3 88.9 85.7 82.8 80.0 7.4 750
. 28 96.2 92.6 89.3 86.2 83.3 80.6 78.1 75.8
26 96.3 929 89.7 86.7 83.9 81.3 78.8 76.5
27 96.4 93.1 90.0 87.1 84.4 81.8 79.4 77.1
28 96.6 93.3 90.3 87.5 84.8 82.4 80.0 77.8
29 96.7 93.5 90.6 87.9 85.3 82.9 80.6 78.4
30 96.8 93.8 90.9 88.2 85.7 83.3 81.1 78.9
31 96.9 93.9 91.2 88.6 86.1 83.8 81.6 79.5
32 970  94.1 914 88.9 86.5 84.2 82.1 80.0
33 97.1 94.3 91.7 89.2 86.8 84.6 82.5 80.5
34 97.1 94.4 919 89.5 87.2 85.0 82.9 81.0
35 972 94.6 92.1 89.7 87.5 85.4 83.3 81.4
36 97.3 94.7 923 90.0 "87.8 85.7 83.7 81.8
37 97.4 04.9 92.5 90.2 88.1 86.0 84.1 82.2
38 97.4 95.0 92.7 90.5 88.4 86.4 84.4 82.6
39 975 95.1 929 90.7 88.6 86.7 84.8 83.0
40 97.6 95.2 93.0 90.9 88.9 87.0 85.1 83.3
060099



TABLE A-7. (CONTINUED) - %284

.CONFIDENCE LEVELS FOR NON.PARAMETRIC
PREDICTION LIMITS FOR N=1(1)100

NUMBER OF FUTURE SAMPLES

k=2 k=3 k=4 k=§ k=6 k=7 k=8
95.3 93.2 91.1 89.1 87.2 85.4 83.7
95.5 93.3 91.3 89.4 87.5 85.7 84.0
95.6 93.5 91.5 89.6 87.8 86.0 84.3
95.7 93.6 91.7 89.8 88.0 86.3 84.6
95.7 93.8 91.8 90.0 88.2 86.5 84.9
95.8 93.9 92.0 90.2 88.5 86.8 85.2
95.9 94.0 92.2 90.4 88.7 87.0 85.5
96.0 04.1 92.3  90.6 88.9 87.3 85.7
96.1 04.2 92.5 90.7 89.1 87.5 86.0
96.2 94.3 92.6 90.9 89.3 87.7 86.2
96.2 944  92.7 91.1 - 895 87.9 86.4
96.3 94.5 92.9 91.2 89.7 88.1 86.7
96.4 94.6 93.0 914 89.8 88.3 86.9
96.4 94.7 93.1 91.5 90.0 88.5 87.1
96.5 94.8 93.2 91.7 90.2 88.7 87.3
96.6 94.9 93.3 91.8 90.3 88.9 87.5
96.6 95.0 934 91.9 90.5 89.1 87.7
96.7 95.1 93.5 92.1 90.6 89.2 87.9
96.7 95.2 93.7 92.2 90.8 89.4 88.1
96.8 95.2 93.8 92.3 90.9 89.6 88.2
96.8 95.3 93.8 92.4 91.0 89.7 88.4
96.9 95.4 93.9 92.5 91.2 89.9 88.6
96.9 95.5 94.0 92.6 91.3 90.0 88.7
97.0 95.5 94.1 92.8 91.4 90.1 88.9
97.0 95.6 94.2 929 91.5 90.3 89.0
97.1 95.7 04.3 93.0 91.7 90.4 89.2
97.1 95.7 94.4 93.1 91.8 90.5 89.3
97.1 95.8 94.4 93.2 91.9 90.7 89.5
97.2 95.8 94.5 93.2 92.0 90.8 89.6
97.2 95.9 94.6 93.3 92.1 90.9 89.7
97.3 95.9 94.7 93.4 92.2 91.0 89.9
72 97.3 96.0 94.7 93.5 92.3 91.1 90.0
973 96.1 94.8 93.6 92.4 913 90.1
974 96.1 94.9 93.7 925 914 90.2
97.4 96.2 94.9 93.8 92.6 915 90.4
97.4 96.2 95.0 " 93.8 92.7 91.6 90.5
97.5 96.3 95.1 93.9 92.8 91.7 90.6
97.5 96.3 95.1 94.0 92.9 91.8 90.7
97.5 96.3 95.2 94.0 92.9 91.9 90.83
97.6 96.4 952 94.1

930 920 909
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TABLE A-7. (CONTINUED)

A-15

CONFIDENCE LEVELS FOR NON-PARAMETRIC 7284
PREDICTION LIMITS FOR N=1(1)100
NUMBER OF FUTURE SAMPLES

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

81 98.8 97.6 96.4 95.3 04.2 93.1 92.0 91.0
82 98.8 97.6 96.5 95.3 94.3 93.2 92.1 91.1
83 08.8 97.6 96.5 95.4 94.3 93.3 92.2 91.2
84 98.8 97.7 96.6 95.5 94.4 93.3 92.3 91.3
85 98.8 97.7 96.6 95.5 94.4 93.4 924 91.4
86 98.9 97.7 96.6 95.6 94.5 93.5 92.5 91.5
87 98.9 97.8 96.7 95.6 04.6 93.5 92.6 91.6
88 98.9 97.8 96.7 95.7 94.6 93.6 92.6 91.7
89 08.9 97.8 96.7 95.7 94.7 93.7 92.7 91.8
90 98.9 97.8  96.8 95.7 94.7 93.8 92.8 91.8
91 98.9 97.8 96.8 95.8 94.8 93.8 92.9 919
92 98.9 97.9 96.8 95.8 94.8 93.9 92.9 92.0
93 98.9 97.9 96.9 95.9 094.9 93.9 93.0 92.1
94 98.9 97.9 96.9 95.9 94.9 94.0 93.1 92.2
95 99.0 97.9 96.9 96.0 95.0 94.1 93.1 92.2
96 99.0 98.0 97.0 96.0 95.0 04.1 93.2 92.3
97 99.0 98.0 97.0 96.0 95.1 94.2 93.3 924
98 99.0 98.0 97.0 96.1 95.1 094.2 93. 92.5
99 99.0 98.0 97.1 96.1 95.2 94.3 93.4 92.5
100 99.0 98.0 97.1 96.2 95.2 94.3 93.5 92.6
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the non-parametric alternatve arractive. However, the presence of nondetects prevents a unique
ranking of the concentmration values, since nondetects are, up to the limit of measurement, all ded at

the same value.

To get around this problem, two steps are necessary. First, in the presence of ties (e.g.,
nondetects), all tied observations should receive the same rank. This rank (sometmes called the
midrank (Lehmann, 1975)) is computed as the average of the ranks that would be given 1o a group
of tes if the ted values actually differed by a tiny amount and could be ranked uniquely. For
example, if the first four ordered observations are all nondetects, the midrank given to each of
these samples would be equal to (14+2+3+4)/4=2.5. If the next highest measurement is a unique
detect, its rank would be 5 and so on until all observations are appropriately ranked.

The second step is to compute the Kruskal-Wallis statistic as described in the Interim Final
Guidance, using the midranks computed for the tied values. Then an adjustment to the Kruskal-
Wallis statistic must be made 1o account for the presence of ties. This adjustment is described on
page 5-17 of the Interim Final Guidance and requires computation of the formula:

H'= H
1-(2.' ..L_‘..‘_.)

"'N-N
where g equals the number of groups of distinct tied observations and t; is the number of
observadons in the ith ted group.

EXAMPLE 12

Use the non-parametric analysis of variance on the following data to determine whether there
is evidence of contamination at the monitoring site.

Toluene Concentraton (ppb)
Wells Compliance Wells

Month Well 1 Well 2 Well 3 Well 4 Well 5
1 <5 <5 " <5 <5 <5
2 7.5 <5 12.5 13.7 20.1
3 <5 <5 8.0 15.3 35.0
4 <5 <S <5 20.2 28.2
5 6.4 < 112 25.1 19.0
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SOLUTION

Step 1.  Compute the overall percentage of nondetects. In this case, nondetects account for 48
percent of the data. The usual parametric analysis of variance would be inappropriate.
Use the Kruskal-Wallis test instead, pooling both background wells into one group and
treating each compliance well as a separate group.

Step 2. Compute ranks for all the data including ted observatons (e.g., nondetects) as in the
following table. Note that each nondetect is given the same midrank, equal 1o the

average of the first 12 unique ranks.
“Toluene Ranks
Background Wells : Compliance Wells
Month Well 1 Well 2 Well 3 Well 4 Well 5

1 6.5 6.5 6.5 6.5 6.5

2 14 6.5 17 - 18 21

3 6.5 6.5 15 19 25

4 6.5 6.5 6.5 22 24

5 13 6.5 _ 16 23 20
Rank Sum Rp=79 R3=61 R4=88.5 Rs=96.5
Rank Mean Rp=7.9 Ri=122 R=177 Rg=193

Step 3. Calculate the sums of the ranks in each group (R;) and the mean ranks in each group
(R;). These results are given above.

Step 4. (C}ompuxetheKmshl—WamsstansncHusmgﬂwfonnulaonp 5-15 of the Interim Final
uidance

12 x Ry
Hz[N(N‘FI)zm N] 3(N+1)

where N=total number of samples, Nj=number of sampies in ith group, and K=number
of groups. In this case, N=25, K=4, and H can be computed as

__I12_[19° 6’ 8&s' 965
25%26[10 " 5 5

Step 5. Compute the adjustment for ties. There is only one group of distinct tied observations,
containing 12 samples. Thus, the adjusted Kruskal-Wallis statistic is given by:

- 78 =10.56.
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H'= Lot - 11.87.

12°-12
1=l ==
25° - 25
Step 6. Compare the calculated value of H” to the tabulated Chi-square value with (K-1)= (#
groups-1)=3 df, X123 gs=7.81. Since the observed value of 11.87 is greater than the

Chi-square critical value, there is evidence of significant differences berween the well
groups. Post-hoc pairwise comparisons are necessary.

Step 7. Calculate the critical difference for compliance well comparisons to the background
using the farmula on p. 5-16 of the Interim Final Guidance document. Since the number
of samples at each compliance well is four, the same critical difference can be used for

cach comparison, namely,

25.26(1 1
= Li2)=8s8
G z-"”\/ 12 (10"’5)

Step 8. Form the differences between the average ranks of each compliance well and the
background and compare these differences to the critical value of 8.58.

Well 3: R3-Rp =122.79=43

Well 4: Rg~Rp =17.7-79=9.8

Well 5: Rg~Rp =19.3-79=11.4

Since the average rank differences at wells 4 and 5 exceed the critical difference, there is
significant evidence of contaminarion at wells 4 and 5, but not at well 3.

3.2 WILCOXON RANK-SUM TEST FOR TWO GROUPS

When a single compliance well group is being compared to background data and a non-
paramerric test is needed, the Kruskal-Wallis procedure should be replaced by the Wilcoxon Rank-
Sum test (Lehmann, 1975; also known as the two-sample Mann-Whitney U test). For most
ground-water applications, the Wilcoxon test should be used whenever the proportion of
nondetects in the combined data set exceeds 15 percent. However, to provide valid results, do not
use the Wilcoxon test uniess the compliance well and background data groups both contain at least
four samples each. ‘

To run the Wilcoxon Rank-Sum Test, use the following algorithm. Combine the compliance
and background data and rank the ardered values from 1 to N. Assume there are n compliance
sampies and m background samples so that N=m+n. Denote the ranks of the compliance samples
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by C; and the ranks of the background samples by B;. Then add up the ranks of the compliance
samples and subtract n(n+1)/2 10 get the Wilcoxon statistic W:

W= LG, -n(n+1)

The rationale of the Wilcoxon test is that if the ranks of the compliance data are quite large
relative to the background ranks, then the hypothesis that the compliance and background values
came from the same population should be rejected. Large values of the statistic W give evidence of
contamination at the compliance well site.

To find the cridcal value of W, a Normal approximation to its distribution is used. The
expected value and standard deviation of W under the null hypothesis of no contamination are

given by the formulas
E(W 1 D(W ’ 1 N4

An approximate Z-score for the Wilcoxon Rank-Sum Test then follows as:

1
W-E(W)-=
W-EW-2

SD(W)

The factor of 1/2 in the numerator serves as a continuity correction since the discrete distribution of
the statistic W is being approximated by the continuous Normal distribution.

Once an spproximate Z-score has been computed, it may be compared to the upper 0.01
percentile of the standard Normal distribution, z gj=2.326, in order to determine the statistical
significance of the test. If the observed Z-score is greater than 2.326, the null hypothesis may be
rejected at the 1 percent significance level, suggesting that there is significant evidence of
contaminarion at the compliance well site.

EXAMPLE 13

The mble below contains copper concentration data (ppb) found in water samples at a
monitaring facility. Wells 1 and 2 are background wells and well 3 is a singie compliance well
suspected of contamination. Calculate the Wilcoxon Rank-Sum Test on these data.

060103
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I. CONSTRUCTION OF POWER CURVES

To construct power curves for each of the paramerric and non-parametric retesting strategies,
random standard Normal deviates were generated on an IBM mainframe computer using SAS. The
background level mean concentration was set to zero, while the alternative mean concentration level
was incremented in steps of A=0.5 standardized units above the background level. At each increment,
5000 iterations of the retesting strategy were simulated; the proportion of iterations indicating
contamination at any one of the wells in the downgradient monitoring network was designated as the
effective power of the retesting strategy (for that A and configuration of background samples and
monitoring wells).

Power values for the EPA Reference Power Curves were not simulated, but represent analytical
calculations based on the non-central t-distribution with non-centrality parameter A. SAS programs for
simulating the effective power of any of the parametric or non-parametric retesting strategies are
presented below.

//"""'."""'."""'..t""".."..""'".'I".""'.""""'l.'o

//= DESCRIPTION: *** PARAMETRIC SIMULATIONS =***

//*

/7" This program produces power curves for 35 different curve

//* simulations (refer to the SLET statements below). Delta ranges
/7% from 0 to S by 0.5. The variable list is as follows for the
//* input parameters:

A
/7* BG = Background
P WL = wsll

//* TL = Tolerance lLimit

//* PL = Prediction Limit

/7%
//"'t-"""'"""'-"..-""""."t"""'.t"'.""I."-."'..'..:
// EXEC SAS

// QUTSAS DD DSN=XO0OOXX .GWT03000.SJA3082.CURVES,

// DISP=0LD

/7 SYSIN DD *

OPTIONS LS=132 PS§=S57:;
SLET ISTART=];

SLET CURVENUM=35;
SLET RSEED=2020:

ALET REPEAT=5000;
SLET ITPRINT=1000;

SLET BGl =24: ALET WLl =5; ALET TL1 =0.95; ALET PLl1 «0.80:;

ALET BG2 =24; ALET WNL2 =5; SLET T12 =0.95; ALET PL2 =0.85;
ALET BG3 =8; ALET WL3 eS; ALET TL3 =0.95; ALET PL3 =0.80:
SLET BG4 =8; ALET WL4 =5; SLET TL4 =0.95; ALET P14 =0.8S;
LET BGS =24 ALET WLS «20; SLET TLS =0.95; ALET PLS =0.95;
ALET BG6 =24: ALET WLE =20: ALET TL6 =0.95; ALET PL6 =0.97;
ALET BG7 =8; ALET WL7 =20; ALET TL7 =0.95: ALET PL7 =0.95;
ALET BG8 =8 ALET WLB =20; ALET TL8 =0.95; ALET PL8 =0.87: 000106
ALET BGY =24; . ALET WL9 =50: ALET TL9 =0.95; ALET PLS =0.98;

SLET BG10=24; ALET WL10=50: SLET TL10=0.95: SLET PL10=0.99:;



© SLET
* SLET
ALET
SLET
SLET
SLET
SLET
SLET
SLET
SLET
ALET
SLET
SLET
SLET
SLET
SLET
SLET
ALET
SLET
SLET
SLET
SLET
SLET
ALET
ALET

BGl1l=24;
BGl2=24;
BGl3=24;
BGl4=24;
BGl5=24;
BGl6=24;
BGl17=24;
BGl68=24;
BGl9=24;
BG20=24:
BG21l=8;

BG22=8;

BG23=16;
BG24=16;
BG25=24;
BG26=16:
BG27=16;
BG26=16;
BG29=16;
BG30=16:
BG31=16;
BG32=24;
BG33=16:
BG34=16;
BG35=16;

SMACRO PARSIM;

DATA

ITERATE:

RLET
SLET
SLET
SLET
SLET
RLET
SLET
SLET
SLET
SLET
ALET
SLET
ALET
SLET
SLET
ALET
ALET
SLET
ALET
ALET
SLET
SLET
SLET
ALET
SLET

WL11=50;
WL12=50;
WL13=50;
WL14=50;
WL15=50;
WL16=100;
WL17=100;
WL18=100;
WL19=100;
WL20=100;
WL21=20;
WL22=5;
WL23=5;
WL24=5;
WL25=5;
WL26=20;
WL27=20;
WL28=50;
WL29=50;
WL30=50;
WL31=50;
WL32=100:
WL33=100;
WL34=100;
WL35=100;

SLET
SLET
SLET
SLET
SLET
SLET
SLET
SLET
SLET
SLET
SLET
SLET
ALET
SLET
ALET
SLET
SLET
SLET
SLET
SLET
ALET
SLET
ALET
SLET
SLET

TL11=0.99:
TL12=0.99;
TL13=0.99;
TL14=0.98;
TL15=0.98;
TL16=0.98;
TL17=(0.98:
TL168=0.99;
TL19=0.99;
TL20=0.99;
TL21=0.95;
TL22=0.95;
TL23=0.95;
TL24=0.95;
TL25=0.95;
TL26=0.95;
TL27=0.95;
TL28=0.98;
TL29=0.98;
TL30=0.99;
TL31=0.99;
TL32=0.98;
TL33=0.98;
TL34=0.99;
TL35=0.99;

SLET
SLET
ALET
SLET
SLET
SLET
ALET
SLET
SLET
SLET
SLET
SLET
ALET
SLET
ALET
SLET
SLET
SLET
SLET
SLET
ALET
SLET
SLET
SLET

- SLET

PL11=0.90;
PL12=0.93:
PL13=0.94:
PL14=0.95;
PL15=0.97;
PL16=0.97;
PL17«=0.99;
PL1B8=0.95;
PL19%0.97;
PL20=0.98;
PL21=0.98;
PL22+«0.90;
PL23=0.85;
PL24=0.90;
PL25=0.90;
PL26=0.95;
PL27=0.97;
PL28=0_.95;
PL29=0.87;
PL30=0.90:
PL31=0.92;
PL32=0.98;
PL33=0.98;
PL34=0.95;
PL35=0.96;

*** Set changing simulation variable to common variable nnnns:.

DO DELTA=0 TO 5 BY 0.5;

BG=&&BGET;
WlsgeWLE]:
TL=e&TLEL;
Pl=g&PLET;

=ew» Initialize TPO, TPl & TP2 to 0 before entering simulation;

DO J=1 TO &REPEAT:;
vw» Initialize CNTO,

TPO=0;
TP1=0;
TP2=0;

CNTO=0;
CNT1=0;
CNT2=0;

XB=RANNOR (&RSEED) /SQRT (BG) ;
SB=SQRT (2 *RANGAM (§RSEED, (BG~1)/2)/ (BG~1));

CNT1 & CNT2 to O;

PL2=XB+SB*SQRT (1+1/BG) *TINV( (1~ (1-PL) /2), (BG~1)):
PL1=XB+SB*SQRT (1+1/BG) *TINV( (1=-(1-PL)), (BG-1)):
PLO=XB+SB*SQRT (1+42/BG) *TINV((1-(1-TL)), (BG~1)):
TLIM=XB+SB*SQRT (141/BG) *TINV((1-(1-TL)), (BG-1));

DO Kel TO WL:

IF K<WL THEN DO:

X1=RANNOR (&RSEED) ;
X2«RANNOR (&RSEED) ;
X3=RANNOR (§RSEED) ;

END;
ELSE DO;

X1=RANNOR (§RSEED) +DELTA;
X2=RANNOR (&§RSEED) +DELTA;
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 X3=RANNOR (§RSEED) 4DELTA;
END;
TF X1>TLIM THEN DO:
CNTO=CNTO+1; +
IF x2>PL1 THEN CNT1=CNT1+l; ‘ o
IF X2>PL2 OR X3>PL2 THEN CNT2=CNT2+1; BP0 -
END:
END;

IF CNT0>0 THEN TPO=TP0+100/&REPEAT:
IF CNT1>0 THEN TP1=TP1+100/&REPEAT.
IF CNT2>0 THEN TP2=TP2+100/&4REPEAT;

se» print iteration information every 100 iterations;
IsglI;
IF MOD(J,&ITPRINT)=0 THEN
PUT '>>> CURVE ' I ', ITERATION ' J ', ' BG= ‘Y, ' WL= ', ' Tl= ', '
Pl= ', ' DELTA= ', ' TP0= ', ' TPl= ‘', ' TP2=s '<<<!';
END:
ouUTPUT:
END:
RUN;

DATA OUTSAS.PCURVE&I; SET ITERATE (KEEP=BG WL TL PL TPO TPl TP2 DELTA):
RUN;

PROC PRINT DATA=OUTSAS .PCURVE&I:

FORMAT TPO TP1 TP2 B.4;

TITLE1"TEST PRINT OF PARAMETRIC SIMULATION PCURVESI™:
_ TITLE2"NUMBER OF ITERATIONS = &REPEAT*";
RUN:

SMEND PARSIM:
SMACRO CURVE:
SDO ImgISTART RTO &CURVENUM:
SPARS IM
SEND:
SMEND CURVE:
SCURVE

//'""'""""'.-."""."""".""'."""."."'.'."'.'I".".;
//* DESCRIPTION: =*** NON-PARAMETRIC SIMULATION *=*

VA

/7% This program produces power curves for 15 different curve

A simulations (refer to the ALET statements below). Delta ranges
//* from 0 to S by 0.5. The variable list is as follows for the

/7" input parameters:

/1t

//* BG = Background

//* WL = Well

//*
//""".'""'.""'.".""'..".'."'l""-..I"..'."""'..".'.':
//  EXEC SAS _

/7 OUTSAS DD nsu-xxxxxxx.curoaooo.saasosz.cunvzs.oxsp-onp

// SYSIN DD *

OPTIONS LS=132 PS=57;

"ALET ISTART=1;

ALET CURVENUM=1S;

SLET RSEED=3030;

SLET REPEAT>5000;

SLET ITPRINT®1090; gGO41GE
B3



ALET BGl =8: SLET WLl =5;

ALET BG2 =16; RLET WL2 =5;
SLET BG3 =24; SLET WL3 =5;
SLET BG4 =8; . SLET WL4 =20;
SLET BGS =16; *° SLET WLS =20;
ALET BG6 =24; ALET WL6 =20;
SLET BG7 =8; SLET WL7 =50;
SLET BGS =16; SLET WL8 =50;
SLET BGY =24; SLET WLS =50;
SLET BGl0=8; SLET WL10=100;
SLET BGll=l6: ALET WL11=100;
SLET BGl2=24:; SLET WL12=100;
SLET BGl3=32; SLET WL13=100;
ALET BGl4=32; SLET WL14=20:
SLET BGlS5=32:; SLET WL15=50;

SMACRO NPARSIM;
DATA ITERATE:

**s Set changing simulation variable to common variable names;
BG=&EBGEI;

Wi=GEeWLEI;

DO DELTA=0 TO S BY 0.5:

*we Initialize PLx variables to 0 before entering simulation:

PLO=0;
PLl=0;
PL2A=0;
PL2B=0;
PL3A=0;
PL3B=0;

DO J=1 TO &REPEAT:
w=w Initialize CNTx variables to 0:
CNT0=0;
CNT1=0;
CNT2=0;
CNT3=0;
CNT4=0;
CNT5=0;

DO K=1 TO BG:
TEST=RANNOR (4RSEED) ;
IF K=l THEN MAX=TEST;
ELSE IF TEST>MAX THEN MAX=TEST;
END; ’

DO 1=1 TO WL: . .
IF L<WL THEN DO: .
X1=RANNOR (GRSEED) ;
X2«RANNOR (ERSEED) ;
X3=RANNOR (&RSEED) ;
X4=RANNOR (ERSEED) ;

END;
ELSE DO:
X1=RANNOR (&RSEED) +DELTA;
X2«RANNOR (&RSEED) +DELTA;
X3=RANNOR (§RSEED) +DELTA;
X4=RANNOR (§RSEED) +DELTA;
END;
IF X1>MAX THEN DO:
CNTO=CNTO0+1;
IF X2>MAX THEN CNT1=CNT1+l:
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END;

IF ONT
IF QT
IF CNT
IF CONT
IF CONT
IF CNT

L A 2] Pr

I=gl;

IF MOD
PUT

END:
OUTPUT
END:
RUN;

IF X2>MAX & X3>MAX THEN CNT2=CNT2+1:

IF X2>MAX OR X3>MAX THEN CNT3=CNT3+1:

IF X2>MAX & X3>MAX & X4>MAX THEN CNT4=CNT4+1l:
IF X2>MAX OR X3>MAX OR X4>MAX THEN CNTS=CNTS+1;

0>0 THEN PLO=PLO+100/&REPEAT:
1>0 THEN PL1=PL1+100/&REPEAT:
250 THEN PL2A®PL2A+100/&REPEAT;
3>0 THEN PL2B=PL2B+100/&REPEAT:
4>0 THEN PL3A=PL3A+100/&REPEAT;
$>0 THEN PL3P=PL3B+100/&REPEAT:

int iteration information every X iterations:

(3, §ITPRINT) =0 THEN

>>> CURVE ' I ', ITERATION ‘' J ', ' BG= ', ' WL= ',

', ' PLO= ', ' PLl= ', ' PL2A= ', ' PL2B= ', ' PL3A= ', ' PL3B= '<<<';

DATA OUTSAS.NCURVESI; SET ITERATE (KEEP=BG WL PLO PL] PL2A PL2B PL3A PL3B DELTA);

RUN;

PROC P

RINT DATA=OUTSAS.NCURVE&I:

FORMAT PLO PL1 PL2A PL2B PL3A PL3B 8.4;

TITLE1"TEST PRINT OF NON-PARAMETRIC SIMULATION NCURVEE&I™:

TITLE2"NUMBER OF ITERATIONS = GREPEAT®;

RUN:

SMEND NPARSIM:
SMACRO CURVE:

sDO .
NP
SEND
SMEND
SCURVE

I=gISTART ATO &CURVENUM:
ARSIM

CURVE;

BS
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II. PARAMETRIC RETESTING STRATEGIES

EFFECTIVE POWER (%)

EFFECTIVR POWRR (8)

POWER CURVE FOR 95% TOLERANCE
AND 90% PREDICTION LIMIT

(8 Bockground Sampies; 5 weils)

POWER CURVE FOR 95% TOLERANCE

AND 90% PREDICTION LIMIT
(16 Dackgreund Sampiles; § wells)

. 7284

8  EPA Reference
X Zero remmmples
O Oneremmpie
& Twe remmpies

8 EPARdwrence

X  Zere remmpis
O Ome

remmple
& Termame 060112



EFFECTIVE POWER (%)

EFFECTIVR POWER (%)

POWER CURVE FOR 95% TOLERANCE
AND 85% PREDICTION LIMIT

(16 Backgreund Sempies; 5 wells)

POWER CURVE FOR 95% TOLERANCE

AND 85% PREDICTION LIMIT
(24 Backgresad Sempler; § welle)

100 (r—————————

PUNY S T U U

EPA Reference
Zere remmpiss

> O % ®
£
!

Twe resampiles

EPA Reference
2are remmpis

> O % &
f
l

Twe remmpias
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EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

POWER CURVE FOR 95% TOLERANCE
AND 90% PREDICTION LIMIT N g
(24 Backgrenad Samples; § wells) oo =

J T M 1

B EPA Rederence
*  Zere remmples

POWER CURVE FOR 95% TOLERANCE
AND 98% PREDICTION LIMIT

(8 Dackground Sampiex; 20 wells)

B EPA Reference
X Zere remmpis
O Oueremmpie
& Twe remmpies
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EFFECTIVEPOWER (%)

EFFECTIVE POWER ()

POWER CURVE FOR 95% TOLERANCE 7284
AND 97% PREDICTION LIMIT |

(16 Backgreund Sampies; 20 wells)

8 EPA Reference
X Zere remmpies
O Oueremmpie
4 Twe remmpins

POWER CURVE FOR 95% TOLERANCE
AND 97% PREDICTION LIMIT

(24 Backgreund Sampies; 20 welly)

B EPA Rderence
X  Zere remmples
O OCueremmple
A Twe remmpiss

0GU1La
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EFFECTIVE POWER (%)

EFFECTIVE POWER (D)

POWER CURVE FOR 98% TOLERANCE

AND 97% PREDICTION LIMIT

(16 Backgreund Sampiles; 50 wells)

4 (UNITS ABOVE BACKGROUND)

POWER CURVE FOR 99% TOLERANCE

AND 92% PREDICTION LIMIT
(16 Backgresnd Semplas; 50 wells)

7284

8 EPA Referance
X  Zere resampies
O Ouneremmple
A Twe remmpiss

8 EPA Refereace
X Zare remmples
O Oueremmpte
4 Tweremmpies
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EFFECTIVE POWER (%)

RFFECTIVE POWER (8)

POWER CURVE FOR 98% TOLERANCE » 284

AND 95% PREDICTION LIMIT

(24 Background Sampies; 50 wells)

8 EPA Reference
X  Zare remmples
(o] Owne remmpie
A Tweremmpiss

POWER CURVE FOR 99% TOLERANCE

100

AND 90% PREDICTION LIMIT
(24 Bockground Sampilas; 50 welly)

k] M 1 1 ¥

1 8 EPARdereace
X Zere remmpin
O(hﬂ#

& Tweremmpis
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EFFECTIVE POWER (%)

EFFECTIVR FOWER (%)

7284

POWER CURVE FOR 98% TOLERANCE
AND 97% PREDICTION LIMIT

(24 Background Sampies; S0 weils)

14 L 1

b O % m
4
5

POWER CURVE FOR 95% TOLERANCE
AND 98% PREDICTION LIMIT

(34 Backgrouns sampss; 5§ weils)

EPA Reference
Zere resampies

> O % ®
£
l

Twe resampies

06ULLs



EFFECTIVE PFOWER (%)

EFFECTIVRE POWER (8)

POWER CURVE FOR 98% TOLERANCE |
AND 98% PREDICTION LIMIT 7284

(16 Backgreuad Samples; 100 wells)

T M T

B EPA Reforence
X  Zaro remmples

@) Owe remmpie
& Twe remmpics

POWER CURVE FOR 99% TOLERANCE
AND 95% PREDICTION LIMIT

(24 Backgreund Sampiles; 100 wells)

100 Y g T T

H EPA Reforence
X  Zare ressmples
o) One remmple
a 'h-u-pu
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EFFECTIVE POWER (%)

7284
POWER CURVE FOR 98% TOLERANCE
AND 98% PREDICTION LIMIT

(34 Rackgrevad Sampilar; 100 wells)

B EPA Refereace
% Zere remmples
O Oneremmpie
& Twe remmpls

L] 1 3 3 4 $

B-15
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7284

Il NON-PARAMETRIC RETESTING STRATEGIES
POWER CURVE FOR NON-PARAMETRIC

PREDICTION LIMITS
(8 Backgreund Sampias; 5 wells)
)
£
£
E
g B EPA Rderencs
O Zere ressmpins
4  Oue remmple
i
E
£
E B EPA Rderence
A Twe remmpies (A)
o] 1\"—'!-(')

0001<1
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EFFECTIVE POWER (%)

EFVECTIVEPOWER (%)

8 EPA Refarence
A Three remmpies (A)
O Thres remmpias (B)

4 (UNITS ABOVE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
| PREDICTION LIMITS
(16 Backgrenad Sampias; 5 wells)

B EPA Refermace
O Zare remmpins
& Oneremmph
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EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

100

100

(16 Backgreuad Sampias; 5 wells)

v L4 ' v v v ' v v v ' L J L] v ' v v v

L ' v v L2 | L] A LS ' v v v l v LERRJ

. 7284

@ EPA Rdewc
A Tweremmpies(A)
O Twe resampies (B)

8 EPARdumc
& Thres rassmples (A)
O Twresremmpiss (B)
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EFFECTIVE POWER (%)

EFFECTIVE POWER ()

< v2g4

POWER CURVE FOR NON.PARAMETRIC
PREDICTION LIMITS

(24 Backgresad Sampies; 5 wells)

8 EPA Reference
O Zueremmpin
4 Oueremmpic

B IPA Rewrenn
A Tweremmpies(A)
O Twerempies (B)
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EFFECTIVE POWER (%)

EFFECTIVE POWER (B)

"242_:8’.-4

8 EPA Refemce
A Thres remmpies (A)
O Tures remmpiss (B)

4 (UNITS ABOVYE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
. PREDICTION LIMITS

(8 Rackground Sampiex; 30 welks)

B IPARdeumce
o] Zare remmples
&  Oune remmphe
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(8 Backgrouad Sampies; 20 welis)
4 (UNITS ABOVE BACKGROUND)
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EFFECTIVE POWER (®)

ESFECTIVE POWER (%)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(16 Background Sampies: 20 weils)

-

B EPA Rdereace

O Zereremmpies
A QOue remmple

8 XPARdewa
A Tweremmples (A)
O Tweremmpies (B)

0G0LE?
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EFFECTIVE POWER (%)

EPFECTIVR POWER (%)

(16 Backgrouad Sampies; 20 weils)

B EFA Rdwewce
A Thres resampies (A)
O Tures remmpiss (B)

4 (UNITS ABOVE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(24 Bockground Sampies; 29 wells)

8 EPFARdeen
O 2areremmpins
& Oue ressmph
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EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

7284

8 EPARdewmc
A Tve remmples (A)
O Twe remmpies (B)

' L] v v ' v L] v ' v v v ' L] v v

8 EPARdewcs
A Tures remmpies (A)
O Twreeremmpin (B)

b &
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EFFECTIVE POWER (%)

EFFECTIVE POWER (B)

7284

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(X2 Backgrousd Samples; 20 weils)

— Y ™

8 EPA Reference
O Zavremmpin
& Oweremmple

B8 EFARdewc
A Twe resampies (A)
O Tweremmpin(®)
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EFFECTIVE POWER (%)

RFFECTIVEPOWER (%)

@ EPA Rdwence
A Tures remmpies (A)
O Turee resampies (B)

A (UNITS ABOVE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(8 Background Samplas; 50 wells)

B EPA Rderenc
O Zueremmpins
4 Oue remmple
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EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

7284

N EPA Reference
A Tweremmpiles(A)
© Twe remmpies (B)

B EPA Reference
A Thres resampies (A)
O Thresremmpins (B)
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