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MEMORANDUM BEER24554

To: T.C. Greengard

From: B.P. Doty

Date: July 16, 1987

Subject: Revised Analysis of 881 Hillside Radiometric Data

As you are aware, our recent report on RI activities at the
881 Hillside (Rockwell International, 1987b) reported 1low
level plutonium-239 and americium=-241 contamination of ground
and surface waters in the vicinity of the 881 Hillside. The
contamination was at least an order of magnitude lower than
the drinking water standards for these elements. The report
was prepared quickly to meet the regulatory deadline and was
based on laboratory data for which QA/QC were not complete.
The laboratory has provided revised results (Rockwell
International, 1987a) that do not <clearly indicate
radionuclide contamination of ground water (surface water data
have not yet been evaluated). The amended data are presented
in Table 1.

The amended data indicate that plutonium and americium
contamination of the ground water is highly unlikely. A
histogram of the frequency of plutonium measurements occuring
in 0.2 picoCurie per 1liter (pCi/l) ranges is presented as
Figure 1. Most of the values fall in the range of 0.0 to less
than 0.2 pCi/l and values less than 0.6 are visually within
the same population (distribution is probably log-normal).
Values of 0.8 pCi/l and greater appear to be outside the
reasonable range for the low concentration population.
However, the higher values do not appear to be significantly
different from the low valued population when the range is
considered.

Ranges are reported for radiometric analyses because the
disintegration of radiocactive elements 1is a probabalistic
event, i.e., there is a certain probability that successive
measurements of particle emission from the same sample will

vary over a certain range. It can be shown that a single

observation from a distribution that is binomial, as is true
of radiocactive disintegration rates, gives both an estimate of

the mean and an estimate of the variance of the distribution

(Friedlander et al., 1964 - page 175). Friedlander et al.
(1964) go on to show that the standard deviation (square root
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of the variance) is equal to the square root of the ratio of
the disintegration rate to the time of counting (in actual,
unscaled counts). Hence, we can be reasonably confident that
the "true" value is in a band defined by the reported value,
plus or minus the range.

This concept appears validated in the plutonium data under
consideration by the fact that successive analyses of 3 of the
5 high valued wells fall within the low valued population.
The remaining two wells do not have repeated analyses but have
ranges sufficiently great that the "true" value could be in
the low valued population. These factors are shown on Table 2
and are indicated on Figure 1.

Similar logic can be applied to the americium data. Most of
the values fall in the range of 0.0 to less than 0.2 pCi/l
(Figure 2). There are four higher valued results, one of
which has a second analysis within the low valued population.
Two of the others have ranges that could easily place the
"true”"” value in the low valued population. Only one of the
americium results (well 9-74) is significantly high. This may
be due to actual elevation of americium in the ground water
near the well or may be due to laboratory error or
interferences (QA/QC is not complete for the 9-74 data).

Therefore, it is concluded that plutonium and americium
contamination of ground water in the vicinity of the 881
Hillside Area is unlikely. However, it is recommended that
monitoring be continued to validate this conclusion.
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Table 1. 881 Hillside - Plutonium and Americium
Radiometric Data

Well Date Pu-239 Range Am-241 Range
1-71 3/ 9/ 87 .9 .63 .0 1.8
1-71 5/ 1/ 87 .1 1.5 .0 2.6
9 - 74 5/ 10/ 87 .55 .39 6.6 3.9
54 - 86 5/ 28/ 87 .008 .75 .9 3.7
55 - 86 5/ 19/ 87 .03 .65 .0 4.2
55 - 86 5/ 28/ 87 .07 .82 .0 1.2
59 - 86 4/ 9/ 87 .00 .84 .0 1.6
59 - 86 4/ 30/ 87 .9 1.1 .0 1.3
61 - 86 3/ 11/ 87 4.0 6.9 .29 .86
61 - 86 5/ 5/ 87 .29 .86 .0 1.3
62 -~ 86 4/ 10/ 87 .0 1.1 .0 1.3
62 -~ 86 4/ 30/ 87 .0 1.3 .0 1.4
64 - 86 4/ 29/ 87 .2 1.1 .0 1.4
65 - 86 5/ 15/ 87 .00 .65 .0 1.3
65 -~ 86 5/ 29/ 87 .16 .78 .0 1.2
68 - 86 4/ 29/ 87 .00 .85 2.3 2.9
69 - 86 4/ 29/ 87 .0 2.1 .0 1.3

2 - 87 5/ 29/ 87 .9 1.1 .0 6.0

3 - 87 6/ 16/ 87 .2 1.1 .0 4.1
4 - 87 5/ 20/ 87 .0 .55 .0 2.6
5 - 87 6/ 12/ 87 .00 .55 .0 3.0
8 - 87 6/ 15/ 87 1.7 1.9 .0 1.5

Notes:

All data are in pcCi/1l.

Range (standard deviation) indicates numerical band
in which successive measurements can be
confidently expected to fall.

Data revised July 10, 1987 except for data for well
9-74 which QA/QC is not complete.
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Table 2. Explanation of Apparent High Plutonium Values
Second Analysis
Range Includes Low Falls in Low
Well Valued Population Valued Population
1-71 X X
59-86 X X
61-86 X X
2-87 X
8-87BR X
Table 3. Explanation of Apparent High Americium Values
Second Analysis
Range Includes Low Falls in Low
Well Valued Population Valued Population
9-74 ?
54-86 X
61-86 X X
68-86 X
Notes:

9-74

data QA/QC not complete.
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Americium—241 Histogram
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Statistical Considerations

in Radioactivity Measurements

The radioactive-decay law discussed in chapter 3 describes the average behav-
ior of a sample of radioactive atoms. In measurements of radioactive decay
we are concerned with observations which show fluctuations about the average
behavior predicted by the decay law. Therefore we shall discuss in this chap-
ter the applications of statistical methods to the treatment of radioactivity
measurements.

A, DATA WITH RANDOM FLUCTUATIONS

Consider the set of data actually obtained with a Geiger counter measuring
a “‘steady’’ source, as given in table 6-1. The number of counts recorded per
minute (the counting rate) is clearly not uniform. Which minute gave the
most accurate result? The best thing we can do is to compute the arithmetic
mean (the average value) and consider it as representing the proper counting
rate. What we are trying to do is to estimate from a finite number of obser-
vations the results of an essentially infinite number of observations. In par-
ticular, we wish to estimate the average value that we would find and the
distribution of the observed values about that average.

Average Value. If the determinations, minute by minute, are denoted
by 1, z2, . . . z; for the first, second, . . . sth minute, then the arithmetic
mean value 2 is, by definition,

2= FVL z;, (6-1)

where N i8 the number of values of z to be averaged. For the counting rates
in the table 2 = 990/10 = 99.0.

-166
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Table 6-1
Minute Counts A Al
1 89 -10 100
2 120 421 441
3 94 -5 25
4 110 +11 121
b 105 +6 36
8 108 +9 81
7 85 -~14 196
8 83 -16 256
9 101 +2 4
10 95 = _18
Totals 990 0 1276

This average value is the best estimate that we can make of the “true”

‘average, &, which is the average we would find for an infinite number of

observations.

Standard Deviation. The distribution of the observed results about £, is a
Tneasure of the precision of the data and can be described by giving all of the
“moments’ of the distribution; that is, the quantities

N
Z (2 — 2)" (6-2)

1

Ny ¢
. ' ) =]
for all values of n. The first moment (n = 1) will always vanish because of
the definition of 2,; the other odd moments [expression (6-2) with “n’" an odd
number] will vanish only if the distribution is symmetrical about £, and #, is
then the most probable value of z. Usually just the second moment lexpres-
sion (6-2) with n = 2, called the variance and denoted by .| is given in
practice. The square root of the variance is called the standard deviation a,.
This quantity'is particularly significant because of the form of the sa-culled
normal distribution law which is expected to describe the distribution of experi-

mental results with random errors:

1 ‘—(I - f()z .
P(z)dr = ‘\/2';; exp [———2::;—] dr, (6-3)

where P(z) dz is the probability of observing a value of r in the interval r —
z + dz.

~ In our example, which contains a finite number of observations, we do not
know £;; we have only an estimate of it: 2. Under these circumstances the
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best possible estimate of the variance is

Ns

gyl = N 1_ ; 2 (z: — 2)% (6-4)

i=}

I'or the data in table -1 we compute o> = 1276/9 = 141.8;0, = 11.9. The
difference between equations (6-2) and (6-4) is noteworthy. The division by
(No — 1) in (6-4) instead of by Ny is a conscquence of estimating the unknown
quantity £, from N, obscrvations; this estimation uses up one of the aobser-
vations and leaves only (Ny — 1) independent quantities for the estimation
of the variance. The validity of this rcasoning becomes clear when we con-
sider the extreme case of only a single observation. Evidently, from a single
abservation we can have no idea of the precision of the measurement, unless
special assumptions are made. This problem is a fundamental one in statisti-
cal analysis and is discussed in standard texts on the subject (cf., for example,
Bl and IF1). :

Precision of Average Yalue. In the preceding discussion we have been
concerned with estimating, from N, observations, the results that would be
obtained from a very large number of observations. It is now necessary to
discuss the precision of our estimation which is not to be confused with the
precision of the data, although the two quantities are related. We are here
concerned with two things:

1. The distribution of the values of £ given by (6-1) from many sets of
experiments, each with a finite N,.

2. The distribution of the quantities o, obtained from the same sets of
observations by (6-4).

The formal statistical analysis of these two problems, as discussed in stand-
ard texta (F1), is contained in the x!-test of the randomness of the data, the
t-test of the reliability of 2 as an estimate of £, and the F-test of the reliability
of #,? as an estimate of the true variance of the sample.

Our main interest is in the first question, the reliability of 2; a measure of
this reliability is the variance of ¢ mean which is estimated by the variance
of the set of observations divided by Ny:

No
g,

| 1 )
U.’ - Fo - m; (%¢ — 1)’. (6-5)

The quantity o3 is our best estimate of the second moment of the distri-
bution of average valuea that would be found from an infinite number of sets
of emperiments, each containing N, observations of which table 6-1 is an

- mmsmghe. The value of o; from table 6-1 is V/141.8/10 = 3.76.
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The significance of this quantity, for a normal distribution, is found in the
statoment that the probability of observing a value of 2 between Fand # 4 di s

2
P(2) d2 = lu.up[1@27gl]dz
'\/21'052

Rejection of Data. The question often arises whether a particular datum
should be rejected beeause of its relatively large deviation from the mean.  In
table 6-1 the observation of 120 counts during the second minute is suspeet,
as perhaps, though to a lesser degree, is the observation of 83 counts during
the eighth minute. This is not necessarily to say that these observations are
wrong (that the error is systematic rather than random), but that deviations
of this magnitude among a small number of observations may have an undue
influence on the mean value that is computed. Thus the eriteria for rejection
should consider not only the magnitude of .the deviation but also the number
of observations made. A criterion established by Chauvenet which includes
both factors (the magnitude of the deviation and the number of observations)
allows the rejection of an ohservation if deviations from the mean that are
equal to or greater then the one in question have a probability of occurrence
that is less than 1/(2N,). In our example the counting rate during the second
minute may be rejected only if the probability of observing counting rates that
deviate by at least 21 counts from the mean of 99 counts is less than 0.05.
We compute this probability by using (6-3) to obtain the probability £ of
observing a count between 78 and 120:

120

1-P=

exp [-—(: — 99)2] lr
e —— - { .
3 V2r- 1418 2-141.8

The value of the integral, as found in the Handbook of Chemisiry and Physics,
is 0.92; thus 1 — /’ is 0.08 and the datum must be retained. If N had been
gix, or less, then the datum would have been rejected. When a datum is
rejected, a new Z must be computed, and Chauvenet’s criterion may be applied

to the remaining suspect data, but with Ny being decreased by one each time
that an observation is excluded.

B. PROBABILITY AND THE COMPOUNDING OF PROBABILITIES

The ideas and definitions just presented may be applied, with varying degrees
of usefulness, to any set of data, whether or not strictly random phenomena
are involved. Before proceeding, we must consider the concept of probability
in greater detail. As illustrations we shall investigate the answers to questions
such as these: - '
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170 RTATISTICAL CONSIDERATIONS [cH. 6]

1. What is the probability that a card drawn from a deck will be an ace?

2. If a coin is flipped twice, what is the probability that it will fall “heads
up' hoth timen?

3. Given a sample of a radioactive material, what is the probability that
exactly 100 disintegrations will occur during the next minute? '

We shall define probability in this way: given a sct of Ny objects (or events,
or results, ete.) containing n, objects of the first kind, n, objects of the second
kind, and n; objects of the ith kind, the probability p; that an object specified
only as belonging to the set is of the fth kind is given by p; = n;/No. By
applying this definition we find that the probability that one card drawn from
a full deck will he an ace is just .

We may now rewrite the definition of the average value 2 of a set of quanti-
ties r;, taking into account the possibility that any partigular value may appear
several, say n;, times. Then

1
2= N—;anxf = Ep,«x,-.
This may be generalized, and the expression for the average value of any
function of z is

J(z) = Zpif(zs). (6-6)

In particular, _
o = Zpi(x; — %) = z? — £? (6-7)

a result that will be useful to us later.

In experimental measurements we may make a large number K of obser-
vations and find the sth result k; times. Now the ratio k;/K is not the proba-
bility p; of the tth result as we have defined it, but for our purposes we assume
that k;/K approaches arbitrarily closely to p; as K becomes very large:

. k;
xl-lﬁ K~ pi

This assumption is not subjeot to mathematical proof because a limit may not
be evaluated for a series with no law of sequence of terms.

Addition Theorem. We turn now to the compounding of several proba-
hilities and consider first the addition theorem. Given a set of N, objects
(or events, or results, etc.) containing n; objects of the kind a; and given that
the kinds a,, a1, . . . a; have no members in common, the probability that
one of the N objects belongs to a combined group a; + a; + - - - a; is just
L

pi. Thus for two mutually exclusive events with probabilities p, and py
i=t
the probability of one or the other occurring is just py + p;. When one card is
drawn from a full deck, the chance of its being either a five or a ten is y +

0168593
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P = . (When one draws onc card while aircady holding, say, four cards,
none of which ix a five or ten, the probability then of getting either a five or a
ton In slightly grester, & 4 8 = §, provided that there in availuble no infor-
mation regarding the identity of other cards thut may already have been with-
drawn.) When a coin is tossed, the probability of cither “‘heads” or “tails’ is

t+4+=1

Multiplication Theorem. Another type of compounding of probabilities is
described by the multiplication theorem. If the probability of an event ¢is p,
and if after ¢ has happencd the probability of another event j is pj, then the
probability that first ¢ and then j will happen is p; X p;. If a coin is tossed
twice, the probability of getting “heads” twice is § X § = {. If two cards

~ are drawn from an initially full deck, the probability of two aces is 3% X #.

The probability of four aces in four cards drawn is gl X & X & X . (The
probability of drawing five aces in fivecardsis gy X & X % X &% X 34 = 0.)

Binomial Distribution. The binomial distribution law treats one fairly
general case of compounding probabilities and can be derived by the appli-
cation of the addition and multiplication theorems. Given a very large set of
objects in which the probability of occurrence of an object of a particular kind
w is p, then, if n objects are withdrawn from the set, the probability H’(r) that
exactly r of the objects are of the kind w is given by

nl

W = (n ~ r)lirl P

a-p"". (6-8)

To see how this combination of terms actually represents the probability in
question, think for a moment of just r of the n objects. That the first of these
is of the kind w has the probability p; that the first and second are of the
kind w has the probability p?, oic., and the probability that all r objects are
of the kind w is p". But, if exactly r of the n objects are to be of this kind,
the remaining n — r objects must be of some other kind; this probability is
(1 — p)*". Thus we see that for a particular choice of r ohiects out of the
n objects tho probability of exactly r of kind w is p"(1 — p)™~"; this particular
choice is not the only one. The first of the r objects might be chosen (from
the n objects) in n different ways, the second in n — 1 ways, the thid in
n — 2 ways, and the rth in n — r + 1 ways. The product of these terms,
nn —1)(n—2)---(n—r+1)i8al/(n —r)l, and this coeflicient nmust
be used to multiply the probability just found. But this coefficient is actu-
ally too large in that it not only gives the total number of possible arrange-
ments of the objects in the way required but also includes the number of
arrangements which differ only in the order of selection of the r objects. So
we must divide by the number of permutations of r objects which is r!. Thus
the final coefficient is nl/(n — r)!rl, which is that in (6-8). The law (6-8) is
known as the binomial distribution law because this coefficient is just the
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coefficient of z'y™*~" in the binomisal expansion of (z + y)®. Since in (6-8),

z+y=p+(1-0p),

we have

W(r) = 1,

r=0

and the binomial distribution is seen to be normalized.

C. RADIOACTIVITY AS A STATISTICAL PHENOMENON

Binomial Distribution for Radiocactive Disintegrations. We may apply the
binomial distribution law to find the probability 1 (m) of obtaining just m dis-
integrations in time ¢ from N original radioactive atoms. We think of N, as
the number n of objects chosen for observation (in our derivation of the
binomial law), and we think of m as the number r that is to have a certain
property (namely, that of disintegrating in time t), so that for this case the
binomial law becomes

No!

Wm) = = mymi P

(1 — p)No ™. (6-9)

Now the probability of an atom not decaying in time ¢, 1 — p in (6-9), is given

by the ratio of the number N that survive the time interval ¢ to the initial
number N,

L
pisthenl — ¢™. We now have
- Nl
W(m) = m (l - c"”)"(e‘“)"""'. (6‘10)

Time Intervals between Disintegrations. Since the time of Schweidler’s
derivation of the exponential decay law from probability considerations, the
applicability of these statistical laws to the phenomena of radioactivity has
been tested in a number of experiments. As an example of the positive evi-
dence obtained, we consider the distribution of time intervals between dis-
integrations. The probability of this time interval having a value between
¢t and ¢ - dt, which we write as P(f) dt, is given by the product of the proba-
bility of no disintegration between 0 and ¢ and the probability of a disinte-

0168594
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gration between ¢t and ¢ + dt. The first of these two probabilities is given by
(8-10) with m = 0:

Nyl
No(:ol.(l _ e—u)u(e—-u)No - N

W) =

(Notice that 0! = 1.) The probability of any one of the Ny atoms disinte-
grating in the time dt is clearly, from the addition theorem, N\ dt. [See
chapter 1, p. 5, or obtain this result as I’(1) from equation 6-10 with m = 1,
t replaced by dt, and all terms in (dt)? and higher powers of d¢ neglected.] Then

P@t)dt = Noxe VoM dr. (6-11)

Experiments designed to test this result usuaily measure a large number s of
time intervals between disintegrations and classify them into intervals differ-
ing by the short but finite length Af; then the probability for intervals between
t and ¢ + At should be Nohe™¥* At, and the number of measured intervals
between ¢ and ¢ + At should be sNoe™¥o* At.  For example, Feather found
experimentally that the logarithm of the number of intervals between ¢ and
¢t + At is proportional to ¢, as required by this formula.

Average Disintegration Rate. Another application of the binomial law
to radioactive disintegrations may be scen if we calculate the average value
of a set of numbers obeying the binomial distribution law. For the moment
we shall revert to the notation of (6-8) and for further convenience represent

1—pbyg:

W) = | S (6-12)

(n—r)tr

The average value to be expected for r is obtained from (6-6):

rm=mn rean nl o
i‘-zoru’(r)-Zr-(—n——_-—r)—!r—!pq .
re= r=0Q

To evaluate this awkward-appearing summation, consider the binomial expan-
sion of (px + ¢)":

r=mn ren

n!
no_ Y 0 S Lol S T .
(pz + 9) 2————(n —an P Zr (r)
r- rel
Differentiating with respect to r, we obtain
np(pr + ¢! = z rz™ NI (r). (6-13)
' r=0 ’
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Now letting z = 1 and using ¢ = 1 — p, we have the desired expression
' re=n

np = ZrW(r)-f.

r=0

This result should not be surprising; it means that the average number 7 of the
n objects which are of the kind w is just n times the probability for any given
one of the objects to be of the kind w.

The foregoing result may be interpreted for radioactive disintegration if n is
set equal to Noand p = 1 — ¢, as before. Then the average number M of
atoms disintegrating in the time tis M = No(1 — e™). For small values of
A¢, that is, for times of observation short compared to the half-life, we may use
the approximation e™ = 1 — At and then M = N\t The disintegration

rate R to be expected is R = M/t = Ng\. (This corresponds to the familiar
equation —dN/dt = AN.)

Expected Standard Deviation. What may we expect for the standard
deviation of a binomial distribution? If we differentiate (6-13) again with
respect to z, we obtain

r=s

a(n — 1)pi(pz + q)* 2 = 2 r(r — Dz W(r).

r=0
Again letting £ = 1 and using p + q = 1, we have

rmn r=gn rmn

nn = Dpt= Y rlr= YW@ = ) A WE = ) r W),

r=0 r=0 r=0

n(n —1)p? =13 — 7.

Recall from (6-7) that the variance ¢,? is given by

_ o} =t — 73
Now, combining, we have

| 0 = n(n = 1)pt + £ — £,
and with # = np )

0,2 = n3p? — np? + np — n?p? = np(1 — p) = npq,

o, = Vnpgq.

For radioactive disintegration this becomes

o= VNl — eMe™ = VMM, (6-14)

0168595
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In counting practice At is usually amall; that is, the observation time { is
short compared to the half-life, and when this is so,

g =V M. (0-140)

We see here a particular example of a very important property of the hino-
mial distribution which, as presently shown, is true for the Poisson distribution
also; that is, there is a simple relationship between the true mean and the true
variance of the distribution. As a consequence, a single observation from a
distribution that is expected to be binomial, as is true of radioactive disinte-
gration rates, gives both an estimate of the mean and an estimate of the vari-
ance of the distribution. Further, for a single observation, the estimate of the
variance of the distribution is also an estimate of the variance of the mean.
It must be immediately emphasized that these remarks are not true in general;
the variance of a thermometer reading, of a length measured by a meter stick,
or of the reading of a voltmeter cannot be estimated from a single observation
and is not in general expected to be equal to the value observed.

If a reasonably larze number m of counts has been obtained, that number m
may be used in the place of A for the purpose of evaluating o. Thus, if
100 counts are recorded in 1 minute, the expected standard deviation is ¢ =
/100 = 10, and the counting rate might be written 100 + 10 counts per
minute. If 1000 counts are recorded in 10 minutes, the standard deviation
of this number is ¢ = V1000 = 32; the counting rate is (1000 + 32)/10 =
100 £ 3.2 counts per minute. Thus we see that for a given counting rate R

the o for the rate is inversely proportional to the square root of the time of
measurement: ‘

R = -"3;
¢
vVm VRt \]ﬁ
= —— = —— = - 6-15
ox . ; t (6-135)

What is the result in an experiment in which the counting time is long
compared. to the half-life? As \{— o, ¢ — 0, and, in this limit, ¢ =
V' Me™ = 0. The explanation is clear; if we start with Ny atoms and wait
for all to disintegrate, then the number of disintegrations is exactly Ny. How-
ever, in actual practice we observe not the number of disintegrations but that
number times a coefficient ¢ which denotes the probability of a disintegration
resulting in an observed count. Taking this into account, we see that in this
limiting case the proper representation of ¢ = V npgiss = VNec(l —¢). If
cK1, theno = \/Noc = v/ number of counts as before. When A 22 1 and_
¢ is neither unity nor very small, a more exact analysis based on ¢ = \/npq _

should be made, with the result that ¢ = VMc(l = ¢ + ce™™).
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The introduction of the detection coefficient ¢ in the preceding paragraph
may raise the queation why it is not necessary to take account of this coefficient

in the more famliliar case with A asmall, where we have written o = Vm. I
we do consider ¢ in this case, we have for the probability of one atom pro-
ducing a count in time ¢, p=(1 —¢™cand g=1—p=1—c¢c+ ce™
Then

¢ = VNo(l —e™)c(l — ¢+ ce™),

and for At small and the same approximations as before

o= No\le = V Mc = 4/number of counts recorded.

This is just the conclusion we had reached without bothering about the detec- E
tion efficiency. It should be emphasized, however, that actual counts and not
scaled counts from a scaling circuit must be used in these equations.

D. POISSON AND GAUSSIAN DISTRIBUTIONS

Poisson Distribution. The binomial distribution law (6-10) can be put into
a more convenient form if we impose the restrictions A < 1, Ny >> 1, m K N,
that is, if we consider a large number of active atoms observed for a time short '
compared to their half-lives. The derivation of this more convenient form
requires the well-known mathematical approximation:

2
RNEPEEEL- R F2 3¢ (6-16)

)

Let us first define the average value of the distribution (6-10):
| M= N1 = ™),

The binomial distribution may then be written as
oG (-w) (=)
w -—— —_— - = .
m) = e mmi\ve) !~ w) U™ w,
Consider the term

Nl
m'-No(No—l)"‘(No—m-i-l)
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For m << N, this term may be estimated by taking its logarithm and using the
first term of the approximation (6-16). The result is

Nol m(m _T'_,U].

___N_.AIM —_ .
(No — m)! ? exp[ 2N,

The term [1 — (M/Ny)]¥* may also be estimated by the use of (6-16), since
M/Ny < 1, a condition that is equivalent to Mt K 1:

MY M
ln(l —m) =Noln<l —m)

(B-17a)

M3
=t A — —
2N,
N,
» (1 - FVA—{) o g M MMUIN,, (6-17b)
3 0 .

Note that this time we use two terms of the expansion, since }/?/2N, is not
necessarily small, even for M/N, <K 1.
Again, for M/Ny < 1, we immediately have from (6-16)

( M )"" mM
In{l — — =~

No, = No
(1 - %) o2 mMIN, (6-17¢)

When the three approximate results (6-17a, b, c) are put into the binomial dis-
tribution, the result is '

m —A

W(m) =

[e—(u—m)'liNo(ﬂ'“”o], (6-18)

where W(m) is the probability of obtaining the particular number of counts m

when M is the average number to be expected. The term outside the brackets
in (6-18):

Mme—M
m!

is the famous Poisson distribution; the term within the brackets may be con-
sidered as a correction factor and is a measure of how well the binomial dis-
tribution is approximated by the Poisson. It is to be emphasized that the
validity of (6-19) as an approximation to (8-10) requires not ouly that a large
number of atoms be observed for a time short compared to their half-lives,
but also that the absolute value of (M — m) be substantially smaller than

v/No. For example, if N'g = 100 and M = 1, both the Poisson and binomial
distributions give W(0) = 0.37; but the binomial distribution gives ¥ (10) =

W(m) = (6-19)

el e agu, mr e
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0.7 X 10~7, whereas the Poisson distribution (6-19) gives W(10) = 1.0 X 10~7,
The corrected Poisson distribution (8-18) gives W(10) = 0.7 X 1077,

Two foatures of the Poisson distribution (6-19) might be noticed in particu-
lar. The probability of obtaining m = M — 1 is equal to the probability of
obtaining m = M, or W(M) = W(M — 1). For large M the distribution is
very nearly symmetrical about m = AM if values of m very far from M be
excluded.

Gaussian Distribution. A further approximation of the distribution law
may be made for large m (say >100) and for |M - mI &K M. With these
additional restrictions, with the approximate expansion,

_ _ Y
ln(1+Mmm>=M m (M m)’

m 2m?

neglecting subsequent terms, and with the use of Btirling’s approximation

2l = Vz %%,

we may modify the Poisson distribution to obtain the Gaussian distribution:

W(m) =

c—(u-ﬂ)'lﬂu' (6‘00)

2rM B
It will be noticed that this distribution is symmetrical about m = M. For
both the Poisson and Gaussian distributions! we may derive ¢ = V' M, or, for
large m, o == Vm.

E. STATISTICAL INFERENCE AND BAYES' THEOREM

As we mentioned at the outset of this chapter, the primary problem of sta-
tistical inference is to estimate, from information available after only a finite
number of observations, the average value that would be obtained after an
infinite number of experimental observations of a given physical quantity.

" In terms of (6-19), what we really wish to know, for example, is the proba-

! The functional dependence ¢ = \/ﬁ is & neceasary condition of the Poisson but not of
the Gaussian distribution. The general form of the Gaussian is

1 (M — m)?
W(m) = 2_.",exp[ 23 ]'

where there is as a rule no relationship between M and ¢. The relationship between ¢ and
M for the Gaussian distribution of counling rales is a consequence of the particular source of
random error: the fluctuation in the decay rate consistent with a decay probability per unit
time which is independent of time. '
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bility that the number of detected disintegrations of a radioactive sample
(counts) is characterized by a mean value M when we have ohserved a value m
[we may denote this probability by ll"(ﬂllm)l. Fquation 6-19 gives us the
inverse of what we wish to know: the probability of observing m counts when
the sample is characterized by a mean value Af {this inverse probability we
may denote as W (mlM )]. These two conditional probabilities are related to
each other:

P/(m)W'(M|m) = P(M)W (m|3l); (6-21)

where P’(m) is the prior probability that the sample will give m counts before
any observations have been made on the sample and (M) is the prior proba-
bility that the sample is characterized by a mean number of counts M before
any observations have been made on the sample. The reader will readily
perceive that these so-called prior probabilities are troublesome quantities.
The two sides of (6-21) are equal to each other because each of them is equal
to the joint probability that a sample will be characterized by a mean of
M counts and will exhibit experimentally m counts. The quantity of interest
wW'(M |m) may be readily obtained from (6-21):

POM)W (m| M)

W' (M|m) = B )

(6-22)

an expression which was first discussed by the Reverend Bayes some two cen-
turies ago.? The prior probabilities P'(m) and P(M) are related:
P'(m) = ) P(M)W(m|A),
o M=o
which states that if, in some manner, P(3) is known, then through a combhi-

nation of the addition theorem and the multiplication theorem the prior proba-
bility P'(m) must also be known. The final expression, then, is

PMW(m|M) (6-23)

Y PANHW(m|2)
M=0

W'(M|m) =

It is of interest to note the implications of (6-23) for a sample that complies
with the restrictions required by the Poisson distribution, that is, a sample
containing a large number of atoms which is observed for a time short com-
pared to their half-life. Taking (6-19) for W(m|}M), we obtain from (6-23)

» ' w M

_ PMY(M™e ™ /ml) (6-24)
Y PQO(Mme ™ /m))
M=o

W' (Mlm) =

1 For a discussion of conditional probability, see chapter § of reference F1.

e I ——————,
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It is impossible to proceed without an explicit expression for P(3f); it is at
this point that the analysis can become metaphysical. We shall proceed by
taking all values of Af as being equally probable:

PM)dM = K dM. (6-25)

With this assumption, the summation in the denominator of (6-24) becomes an
integral and we obtain

‘1 m —M A m —M
W'(M|m) dM = = Rame 7 /ml aar =27 ant, (6-26)
[0 K(M™™/ml) dM m!
since
jo' M™M= ml. O (627)

It is to be carefully noted that although the right side of (6-28) is similar to
that of (6-19), it has a different meaning. Equation 6-26 gives the probability,
under our choice of P(M), that the sample has a mean between M and M + dM
counts when m counts have been observed. Irom (6-26) it is easily found that -
the most probable value of M is m; through the use of (6-8), (6-7) and (6-27), it
is found that the average value of M is m + 1 and that the standard deviation

of the distribution law (6-26) is V'm + 1. The difference between the
average and the most probable value of M is unimportant for values of m that
are not too small; for small values of m, for example m = 0, there is the ques-
tion whether to estimate M by the average or by the most probable value.

To answer this question we must be clear about the meaning of the average
value of M. It is the value that would be obtained in the following experi-
ment: take a very large collection of samples, each of which had given m counts
in & given time interval. Then the mean number of counts expected from
each sample is determined from the average of a very large number of observa-
tions on each of the very large number of samples. It is then the average
value of this very large number of mean values that is given by m + 1;and m
i8 the mean value that is most frequently observed.

Now, the observation of m counts was made on one of this large number of
samples; the question is, which one? The best answer is the most probable
one; that is, the sample for which M = m. This answer becomes more
familiar if we consider the estimate of the mean counts expected from a sample
after n observations which gave results m;, ms, . . . m, have been made upon
it. An expression for W(M|m,, ms, . . . m,), the probability that the sample
is characterized by a mean value M when n observations give the results
my, ma, . . . , My, can be derived in the same way as (6-26):

M mytmyt . omy —nM
W(M|m,,my - - - m,) = n(nM) : (6-28)

T+ mat o mal
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The maximum of this distribution function occuars for

m m ¢t
M=t Tt M, (4-24)
n

which is the average value of the set of observations just as is expected from
(6-1).

Information on the precision of the estimate for M is contained in the
expressions for the distribution function: (6-26) or (6-28). The precision of
the estimate of M/ may be characterized by the variance of its distribution
function: m + 1 for a single ohservation and (my + m, - - - m, + 1) n* for
n observations.

Variance, as computed above, may be used in the normal distribution law
(6-3). IYor small values of m, though, it is probably best to discuss the data
directly in terms of the distribution function (6-28). I'or example, if there is a
single observation that gives m = 0, (6-28) says that there is a probability of
0.99 that A/ will be less than 4.6. If the value of zero is obtained in 10 inde-
pendent obaervations, then there is a probability of 0.99 that M will be less
than 0.46. "~ -

In summary, then, ior an observed number of counts in excess of about 100,
the best statement that can be made is the customary one (6-14a) that the mean

value is m £+ V/'m (taking m + 1 = m); for a small number of counts the
statement would be that the mean value is m and the confidence in the state-
ment can be obtained from (6-28).

F. EXPERIMENTAL APPLICATIONS

Propagation of Errors. \Vhenever experimental data are used in the com-
putation of a derived quantity, there is the question of the relatiouship between
the precision of the computed values and the precision of the input information.
I'or example, a background counting rate is to be subtracted from an observed
counting rate; or the ratio of the counting rates of two samples is used as a
measure of the relative numbers of atoms in the samples.  The errors in the
computed valucs may be more readily estimated from those of the input datu
if the error attached to each input datum is independent of that attached to
any other.

Consider the independent measurements of two quantities .« and y, which
lead to the result that the probability of observing a value of » hetween o nud
x + dz is X(x) dx, and similarly for y; then the independence of the measure-
ments means that the probability of having a result with r between « and
£ + dz while y is between y and y + dy is

Pz, y) dedy = X(2) Y(y) de dy.

B e T s SN
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We now ask what is our best estimate of some quantity, f, which is a function,
J(z, ¥), of the variables = and y and what is the precision of our estimate of
f? 'The answer to this question is suggested by (6-6). Our best estimate of
f(x, y) is its average value:?

@ = [[ X@ Y@) fz, v) dz dy. (8-30)

Since the q\iantity that is sought is f(%,, #:), it is instructive to examine
the properties of (6-30) by making a Taylor expansion of f(z, y) about the
point £, § which is our best estimate of 2, §;:

[z, y) = ff X(x) Y(y)[f(i‘, H+G-BLED+ - DALED

@-if @—ﬂV

+ f2:(3,0) + = Ju(&, D)

+ &= — D eE D F - ] dzdy, (6-31)

where f;(Z, 9), f::(2, §), fz4(2, §) etc., mean the partial derivatives af/dz,
a%//0z?, 3%f/ax 9y, etc., evaluated at the point 2, 7.

If f(z, y) is a sufficiently slowly varying function in the region of Z, 7 so that
the higher derivatives are negligible, then

, J@ v =12, D), (6-32)
since

j]xmym@—maz—é=o

and
[[x@rwu-p=9-9=0.

For the three elementary arithmetic operations, addition, subtraction, and

multiplication, the Taylor series terminates after a finite number of terms, and
the exact results

z+y=2+4, (6-33a)
Ty =2—4 (6-33b)
Ty = 2§ (8-33¢).

are obtained. This is not the result, however, for the elementary operation of
division.*

4 See discussion on p. 54 of reference Bl and p. 51 of reference B2.

4 The quantity m as evaluated by (6-30) will be infinite unless Y (y) approaches sero more
rapidly than does ¢ (lim (Y (y)/y]l # =). This infinity catastrophe is usuaily avoided by
0

restrioting the values of y to those that have a relatively large likelihood—that is, cloee to §.
«When this i ls done, (6-32) gives the estimate of /.

0168599
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The estimate of the variance is given by

ort = [f(x,p) = Sz, ) = /f X Y(lfGe, ) = S, i) dedy. (630

If again a Taylor cxpansion is used and the higher order terms are neglected,
then
ot = [, Pos’ + L0 Doyt (4-33)

Exact expressions again result for the variance of three of the clementary
arithmetic operations: '

L SR e
ot = o5t + o5 (6-36a)
f S 2 ot
S oz + oy (6-36b)

2
o o8 , 9 | 9oroy

;é?ﬂ’ =3t + rg + 137 (6-36¢)

The third term in expression (6-36¢) is usually small compared to the first
two and may be neglected. Similarly, the first two terms of (5-33) are usually
a good approximation for the variance of other functions of x and y.

As an example, suppose that the background counting rate of a counter is
measured and 600 counts are recorded in 15 minutes. Then with a sample in
place the total counting rate is measured, and 1000 counts are recorded in
10 minutes. We wish to know the net counting rate due to the sample and
the standard deviation of this net rate. First the background rate R, is

600 + V/600 600 + 24
15 15
The total rate R, i8

Ry

= 40 + 1.6 counts per minute.

_1oooi\/1—o—od 1000 + 32
10 10

The net rate R, = 100 — 40 = 60 counts per minute, its standard deviation
isg, = V1.6 + 3.2 = 3.6, and R, = 60 + 3.6 counts per minute.

R,

= 100 £ 3.2 counts per minute.

Gaussian Error Curve. Knowledge of the distribution law permits a
quantitative evaluation of the probability of a given deviation of a measured
result m from the proper average ) to be expected. With the absolute error
|M — m| = ¢, and with the assumption that the integral numbers are so large
that the distribution may be treated as continuous, the probability 1'(¢) de of
an error between ¢ and ¢ + de for the normal distribution is given by

o, | |
W(e) de = —=— e~V de. A (6-37a)
Vol

The factor 2 arises from the existence of pbsiti\'e and negative errors with equal
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probability within the limits of validity of this approximation. Recalling that
g = \/M we have

V(e de = ! \/E e de. (6-37b)
T

4

The probability of an error greater than ko is obtained by integration from
¢ = ko to e = ». Numerical values of this integral as a function of £k may be
found in handbooks. I'or example, we have taken for table 6-2 some repre-
sentative values from the table, ‘‘Probability of Occurrence of Deviations’ in

the Chemical Rubber Publishing Company’s Handbook of Chemisiry and
Physics.

Table 6-2
k 0 0.674 1 2 3 4
Probability of ¢ > ko 1.00 0.50 0.32 0.046 0.0027 0.00006

Notice that errors greater than and smaller than 0.674¢ are equally prob-
able; 0.6740¢ is called the “‘probable error’ and is sometimes given rather than
the standard deviation when counting data are reported. In plots of experi-
mental curves it can be convenient to indicate the probable error of each point
(by a mark of the proper length); then on the average the smooth curve drawn
should be expected to pass through about as many “points” as it misses.
It is unfortunately not strictly correct to use (6-37b) with (6-35) in the estima-
tion of the probability of an error of a function of random variables. For
example, the distribution of the differences of two random variables which
have Gaussian distributions is not itself Gaussian. Nevertheless, if the func-
tion does not vary too rapidly in the vicinity of its average, the distribution of

values about the average is essentially Gaussian with a variance as given in
(6-35).

Comparison with Experiment. We now return to a consideration of the
typical counting data in table 6-1. We have already found from the devi-
ations among the 10 measurements ¢ = \/(No - 1) 2@ -8 =119. If
the counting rate measured there represents a random phenomenon, as we
expect it should, we may evaluate the expected ¢ for the result in any minute
as the square root of the number of counts. For a typical minute, the ninth,
we find ¢ = V101 = 10, and for other minutes other values not much differ-
ent. Because these values agree reasonably with the 11.9 there is evidence for
the random nature of the observed counting rate. This test should occasion-
ally be made on the data from a counting instrument.

In addition to estimating the o for each entry in table 6-1, we may also esti-
mate the o3 for the average of the 10 observations. This estimate can be per-
formed in three different ways, and it is instructive to compare them:

1168600
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1. Since the 10 data are observations of u radionctive deeay, we expeet from
(0-14a) that cach datum has a standard deviation given by the square root of
the number of counts. Tho mean ix caleutnted by summing the datu wnd
dividing by the number of observations (10). The stundard deviation of the
mean, then, can be obtained from (6-33) for the propagation of fluctuations
for a funetion of random variables (the number 10 has zero standard devi-
ation). The result is

990 1 _,—
;=99 \/——; = — /940 = 3.1.
7 990° ~ 10
2. The individual counting rates can be summed, which is equivalent to an
observation of 990 counts in 10 minutes. Again, since we are dealing with
radioactive decay, the standard deviation of the mean is given by (-14a):

1 ==
o= V990 = 3.1.

3. If the fact that these data are from radioactive decay is ignored and no
special relation such as (G-14a) is assumed to exist between cach observation
and its standard deviation, then the standard deviation of the mean is com-
puted from (6-3):

!
1276
gz = d"“‘_ = 38

It is important to note that methods 1 and 2 give the same answer, as they
must; it is not possible to gain more information about the standard devi-
ation of the mean by breaking a 10-minute observation into 10 one-minute
observations. The oz = 3.1 given by methods 1 and 2 is the correct answer.
It is also of interest to see that relinquishing the information contained in
(6-15), as in method 3, diminishes the precision of the estimate of the meun.

The average counting rate with its standard deviation is ¥ = (990 + V940,
10 = 99.0 + 3.1 counts per minute. This means that the probability that the
true average is between 95.9 and 102.1 is, from table -2, just 1 — 0.32 = (.68,
Actually, when the counting data given in table -1 were obtained, the average
rate was measured much more accurately in a 100-minute count, and the result

was (10,042 + V/10,042)/100 = 100.4 + 1.0 counts per minute.

Counter Efficiencies. As another application of the methods of this chapter
to counting techniques, we may estimate the efficiency of a Geiger counter for
rays of a given ionizing power, with the assumptions that any ray that pro-
duces at least one ion pair in the counter gas is counted and that effects at the
counter walls are negligible. Knowledge of the nature of the radiation and
the information given in chapter 4 permit an estimate of the average number
of ion pairs a to be expected within the path length of the radiation in the

1Y
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counter filling gas. The problem then is to find the probability that a ray will
pass through the counter, leaving no ion pairs, and thus will not he counted.
Wo think of the path of tho ray in the countor as divided into n sogmonts of
cqual length; if n is very large, cach segment will be so small that we may
neglect the possibility of having two ion pairs in any segment. Then just ¢
of the n segments will contain ion pairs, and by definition the probability of
having an ion pair in a given segment is p = a/n. Now by (6-8) for the
binomial distribution we have the probability of no ion pairs in n segments;
that is, of r = 0

! 0 " ( G)”
4 - p)® - =[(1--)-
Since the probability' is evaluated correotly only as n hecomes very large,

. a Lod
W@O) = lim (1 — —) = ¢ °
A n
The probability of counting the ray, which is the efficiency to be determined,
isthenl — IV(0) = 1 — €%, Asa particular example, consider a fast g parti-
cle with the relatively low specific ionization of 5 ion pairs per millimeter in air
and a path length of 10 mm in a counter gas which is almost pure argon at
7.6 cm pressure. We estimate a from these assumptions, correcting for the
relative densities of air and the argon:

7.6 40
a=35X10X 76X29=7
The corresponding estimated counter efficiency is 1 — ¢~' = 99.9 per cent.
It should not be expected that an efficiency calculated in this way is very
precise. Wall effects may be important, and the assumption of random distri-
bution of ion pairs along the 8-ray path is not entirely consistent with the
mechanism of energy loss by ionization presented in chapter 4.

Coincidence Correction. If a counter has a recovery time (or dead time
or resolving time) r after each recorded count during which it is completely
insensitive, the total insensitive time per unit time is Rr, where R is the
observed counting rate. If R* is the rate that would be recorded if there were
no coincidence losses, the number of lost counts per unit time is R* — Rand is
given by the product of the rate R* and the fraction of insensitive time Rr:

R* — R = R*Rr,

R -
1 — Rr

R* = (6-38)

' We mlght have evaluated this probability more easily from the Poisson dmmbutwn
expression: W(0) = a%*/01 = ¢¢.

0168601




STATISTICS OF PULSE HEIGHT DISTRIBUTIONS 187

A number of variants of this formula are also in use. Oue expression (the
Schiff formula) is R* = Re®""; this is derived from a calculation of the proba-
bility W (0) of having had no event during the time r immediately preeeding
any event. An event, whether recorded or not, is here considered to prevent
the recording of & second event occurring within the time r.*  Another approxi-
mate expredsion is derived from the first two terms in the binomial expansion
of (1 — Rr)™! appearing in (6-38):

R* = R(1 + Rr) = R + R%.

This form is especially convenient for the interpretation of an experiment
designed to measure r by measuring the rates R, and R; produced by two
separate sources and the rate R, produced by the two sources together, each
of these rates including the background effect R,. Obviously,

R,* + R;* = R* + Ry,

where we have neglected the coincidence loss in the measurement of the low

background rate. Replacing by R;* = R, + R,?r, etc., and rearranging, we
have

_Ri+R -R — Ry
R(z“ ng— R22

T

~ Statistics of Pulse Height Distributions. \When a monoenergetic source of
radiation is measured with a proportional- or scintillation-counter spectrometer,
the observed pulse heights have a Gaussian distribution around the most prob-
able value. The energy resolution of such an instrument is usually expressed
in terms of the full width at half maximum of the pulse height distribution
curve, stated as a fraction or percentage of the most probable pulse height H.
The pulse height Ay, at the half maximum of the distribution curve may be
obtained from the ratio of probabilitics

Why) _ ex [:__(_}!;—M‘z ]
weH) ~ P

. = 0.5.

'.)-Uh

Then (H — hy)?*/oa? = In 2, and the full width at half maximum is

2/H — hy o 2.360,
—— == ’_) ‘_), -— =
H Vi H H

where o, is the standard deviation of the pulse height distribution.
In a proportional counter the spread in pulse heighta for monoenergetic rays
absorbed in the counter volume arises from statistical fluctuations in the num-

* It may be noticed that the Schiff formula might be expected to correspond more closely to
the conditions of coincidence loss in a mechanical register, in which a new pulse within a
dead time could initiate a new dead-time period, although it would not be recorded. There *
exists also the opportunity for coincidence logses in the electric circuits.
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ber of ion pairs formed and statistical fluctuations in the gas amplification
factor. The pulse height is proportional to the product of the gas amplifi-
cation and tho number of ion pairs, and therefore the fractional atandard devi-
ation of the pulse height cquals the square root of the sum of the squares of
the fractional standard deviations of these two quantities. As an example,
consider the pulse height spectrum produced by the absorption of manganese
K X rays in a proportional counter filled with 90 per cent argon and 10 per
cent methane and operating with a gas gain of 1000. I‘rom table 4-1 the
energy per ion pair is about 27 eV, and therefore the number of ion pairs
formed by a 5.95-keV X ray is 5950/27 = 220 + v/220. If the numbers of
ions collected per initial ion pair have a Poisson distribution, the fractional
standavd deviation in the gas gain is v 1000/1000. Thus

;—; = /220/220% + 1000/1000% = 4/0.00455 + 0.00100 = 0.0745,
and the full width at half maximum is 2.36 X 0.0745 = 0.176 or 17.6 per cent.
If the gas gain is made sufficiently large, the fluctuations in the number of ion
pairs determine the resolution, and in this case the resolution of a given counter
is seen to be inversely proportional to the square root of the energy of the
ionizing radiation absorbed.

In a scintillation counter the statistical fluctuations in output pulse heights
arise from several sources (B3). The conversion of energy of ionizing radi-
ation into photons in the scintillator, the electron emission at the photocathode,
and the electron multiplication at each dynode are all subject to statistical
variations. Although the photocathode emission has been shown to have
somewhat larger fluctuations than correspond to the Poisson law, the observed
pulse height distributions are for most practical purposes in sufficiently close
agreement with those calculated on the assumption of Poisson distributions
for all the statistical processes involved. With this assumption the standard
deviation of a pulse height distribution for a single energy of ionizing radiation
absorbed in the phosphor turns out to be approximately

o = HVA/E§ip(a — 1), (6-39)

where f is the most probable pulse height for an incident energy E keV, ¢ is
the mean value of the phosphor efficiency (number of light quanta emitted per
1000 eV of incident energy), / is the mean value of the light collection efficiency
at the photocathode, p is the mean value of the photocathode efficiency (num-
ber of photoelectrons arriving at the first dynode for each photon incident on
the photocathode), and 7 is the average electron multiplication per dynode.
In practice f can be made almost unity, 7 is of the order of 0.1, 7 is usually
about 3 to 5, and § is approximately 30 for NaI(Tl), 15 for anthracene, and
7 for stilbene and for the best liquid scintillators. As an example we estimate
the resolution attainable for the 662-keV photopeak of the Cs!*? 4 rays with a
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sodium iodide scintillation counter. Taking J5 = 0.1and # = 4, we obtain

o 4
— - = {).0)20.
H 662 X 30 X 0.1 X 3

The corresponding full width at half maximum is 2.36 o4/H{ = 0.061 or 6.1 per
cent, which is indeed not far from the best resolution obtained experimentally.
(See the experimental pulse height distribution with 8.5 per cent width at half
maximum shown in figure 3-8.)
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EXERCISES

1. Mr. Jones’s automobile license carries a six-digit number. What is the probability
that it has (a) exactly one 4, (b) at least one 4?7 Make the assumption that the
pumbers 0 to 9 inclusive are equally probable for each of the six digits.

;. Answer: (b) 0.46856.
2. Consider the following set of observations:

Minute Counts
1 203
2 194
3 201
e ‘ 4 217
5 195
] 189 -
7 210
8 207
9 230
10 188

i

(a) Csleulate the aversge value. (b) What is the standard deviation of the set?
x (¢) What is the standard deviation of the mean? (d) What is the probability
that an eleventh obscrvation would have a value greater than 2307 (e) \What i3
the probability that a subsequent set of 10 one-minute observations will have un
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, average value that is greater than 2127 (f) Shoyld any of the data be rejected?
i If s0, what is the new average value? . Answers: (¢) 4.186.
: (9) OVOIQ.
’ 3, (liven an atom of a radlosctive substance with decay constant X, what is (a) the
probability of its decaying between 0 and dt, (b) the probability of its decaying
between 0 and ¢?
4. A sample contains 4 atoms of Lw. What is the probability that exactly 2 of the
atoms will have decayed in (a) one half-life, (b) two half-lives?
8. .\ given proportional countar has a measured background rate of 900 counts in
30 minutes. With a sample of a long-lived activity in place, the total measured
rate was 1100 counts in 20 minutes. What is the net sample counting rate and its
standard deviation? Answer: 25.0 + 1.9 counts per minute.
8. Denote by R, and R, the total and background counting rates for a long-lived sam-
ple and calculate the optimum division of available counting time between sample

.. . ¢
and background for minimum o on the net counting rate. Answer: = = |2

b R

7. (a) Sample A, sample B, and background alone were each counted for 10 minutes;
the observed total rates were 110, 205, and 44 counts per minute, respectively.
Find the ratio of the activity of sample A to that of sample B and the standard
deviation of this ratio, (b) Sample C was counted on the same counter for 2
minutes and the observed total rate was 155 counts per minute. Find the ratio,
and its standard deviation, of the activity of C to that of 4.

Answer: (a) 0.41 + 0.027.

8. Derive (6-28) for the probability of a value Af when given a set of observations m,,
me, « . ., My,

9. The scintillation spectrometer of exercise 4, chapter 5, is to be used for the measure-
ment of 120-keV conversion electrons. What will be the full width at half maxi-
mum of the pulse height distribution?

10. Would the same spectrometer (exercise 9) completely resolve (i.e., give a dip
between the pulse height peaks of) two conversion-electron groups of 44 and §2 keV,
present in the abundance ratio 2:1?

o.
e
op)
@)
op)
o
2
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Tracers in Chemical Applications

A. THE TRACER METHOD

-t

Isotopic Tracers. Mlost of the ordinary chemical elements are composed
of mixtures of isotopes, and each mixture remains essentially invariant in
composition through the course of physical, chemical, and biological processes.
That this is go is shown by the constant isotopic ratios found for elements from
widely scattered sources! and by the fact that atomic weights reliable to many
gignificant figures may be determined by chemical means. It is true that
isulupic fractionation may be appreciable for the lightest elements in which
the percentage mass difference between isotopes is greatest, and this effect
must always be considered in the use of hydrogen tracer isotopes. However,
apart from these isotopes and Be’ which differs in mass from stable Be® by
only about 25 per cent, the next heavier tracer is in carbon where already the
specific isotope effect may be neglected in most tracer work of ordinary
precision. In this section we shall assume that the fact that a given isotope
may be radioactive dones not in any way affect.its chemical (or biolugical)
properties until it actually undergoes the spontaneous radioactive change.
The interesting and important divergences from this assumption are examined
in section C.

Because the isotopic tracer atoms are detected by their radioactivity, they
behave normally up to the moment of detection; after that moment they are
not detected, and their fate is of no consequence.  Of course, if the resulting
atoms after the nuclear transformation are themselves radioactive and capable
of a further nuclear change, the detection method must be arranged to give a
response that measures the proper (in this case the first) radioactive species
only. lor example, if RaE (Bi*!%) is used as a tracer for bismuth, the a
particles from its daughter 0?!? should not be allowed to enter the detection
instrument but should be absorbed by a suitable absorber or by the counter
wall. As a tracer for thorium, UX, is suitable in spite of the fact that most of
the detectable radiation will be from its daughter UX,; the reason is that the

18ome exceptions to the constancy of isotopic ratios were mentioned in chapter 2. p. 24,
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