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What are oxidation rates of reduced uranium?
What are the mechanisms and their products?  

Focus of this talk
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Goals: ● Rates/mechanisms for individual U(IV) species
● Under aquifer conditions
(i.e., the parameters needed for biogeochem models) 

Focus of this talk



From literature and our group’s work:
• uraninite (UO2(s))
• U(IV) sorbed to biomass
• U(IV) adsorbed to minerals
• U(IV) incorporated into Fe sulfides

Forms of reduced uranium



From literature and our group’s work:
• uraninite (UO2(s))
• U(IV) sorbed to biomass
• U(IV) adsorbed to minerals
• U(IV) incorporated into Fe sulfides

Forms of reduced uranium

Biogenic uraninite
• Most well-studied of these materials
• Only form of U(IV) for which thermodynamic, 

kinetic parameters are known 
• Can be used as a proxy to understand behavior of 

other forms of U(IV) in sediments
• Abundant in low-temp. sedimentary ore deposits
• Widely used sink term in biogeochemical models



How can we isolate individual U(IV) species & 
assess their reactivity under field conditions?
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ground 
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Add 
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0.01 atm O2

√√

k = 5.5•10-13

mol m-2 s-1  (50.1 m2 g-1)
Ulrich et al. (2008)

ES&T 42, 5600

Problem is, this doesn’t 
give us what we ultimately 

need to know……..
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… namely rates under field 
conditions that take into 
account: 

• Time-dependent ground water 
composition 

• Role of diffusion
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ground 
water

Conduct 
experiment 

in-well

In well, 
biomass 
present

Solid-phase 
oxidants, in 
appropriate 

matrix

Add 
soluble 
oxidants

Highly informative 
for soluble 

oxidants (DO > 0.5 
mg/L or NO3

-).

This study

Approach: in-situ incubations in wells



• Trace solutes moderate uraninite
stability – dramatically so.

• Ground water is compositionally 
complex in space and time. 

• Laboratory investigations: challenged 
to provide meaningful rates for field 
(but provide crucial information that 
links reactivity to structure).

Courtesy of D. Giammar, WUStL

Bio-UO2 dissolution rates

Biogenic uraninite



→ need for experiments that capture complex 
ground water behavior

To assess roles/function of molecular-scale processes at field scales
To obtain rate laws for biogeochemical models

• Trace solutes moderate uraninite
stability – dramatically so.

• Ground water is compositionally 
complex in space and time. 

• Laboratory investigations: challenged 
to provide meaningful rates for field 
(but provide crucial information that 
links reactivity to structure).

Courtesy of D. Giammar, WUStL

Bio-UO2 dissolution rates

Biogenic uraninite



Rates and mechanisms of biogenic uraninite
oxidation at the Rifle IFRC site



B-02: Oxic
D.O. 0.5-1.2 mg/L

Remove & characterize:
• Structure (EXAFS/XANES, TEM)
• Composition (XPS, SR-PD)
• U loss rate (gel probes)
• Reactivity (CFR)

B02 P103

Model for contaminated DOE-
LM sites in Co River basin
Approach: install bio-uraninite
in ground water

• pre-characterize uraninite
• Install in wells in 

permeable reaction cells

Choose wells 
w/ contrasting 
GW comp: P-103: Suboxic

D.O. <0.1 mg/L

months 
to 

years

Approach: Rifle wells as “in-situ chemostats”

Bio-uraninite stability



Permeable membrane cells:
Keep nanoparticles in/bacteria out

Diffusion test on sample cells C and E 

y = 9.60x
R2 = 0.96
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Cell diffusive half-equilib: 
~20 hr.

Two types of samples:
• Uraninite-water suspensions
• Suspended in polyacrylamide gel pucks:

Diffusion time 
constant ~ few hr.

U(VI)DO, DIC

UO2

Rifle well

16’

Diaphragm

Diaphragm

Gel pucks

windows



Predictions: 12 week reaction oxic well

Before reaction

RATE prediction: 
complete 
dissolution (B-02)

MECHANISM prediction:
Slow oxid. of surface U(IV) → Rapid removal by CO3

-



Observation ≠ Prediction 

After 12 wk. reaction in oxic ground water

Before reaction



Electron Microscopy: after reaction

• UO2 nanoparticles ~ 1.5 nm diam.
• No evidence for any crystalline 

secondary phases.
• Ca, Si associated with UO2



Corrosion mechanism

(111) (200)

(220)
(311)

(331)

Pre-incubation: 2.07(5) nm
P-103: 2.09(4) nm
B-02: 2.15(5) nm
All: a=5.466(2) Å

• No accumulation 
of UO2+X or U(VI) 
solids.

• EXAFS: Local 
structural order 
similar 
before/after

• Diffraction: no change in 
material, particle size.

• No UO2+x, calcite, other phases.

• Mechanism = prediction



Uranium loss rates: gel puck measurements
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Bio-uraninite stability
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Uncleaned: cells + uraninite

suboxic

oxic

Biomass retards U loss!

Uranium loss rates: gel puck measurements
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Mass Loss Rates in Rifle Wells

• Observed U loss rate is slow: R ~ 2x10-11

• 50 to100x slower than laboratory dissolution rate
• Ca is strongly associated with uraninite after retrieval

0.01 atm O2

B-02 P-103



1. O2 diffusion can account for rate (S. Yabusaki, PNNL)

4 month reaction: Predict 52% of uraninite is lost
Observe 55% of uraninite is lost

Why is U mass loss so slow?
Two possible explanations:

UO2(s)

membranemembrane

UO2 UO2

UO2 distribution: 37d



1. O2 diffusion can account for rate (S. Yabusaki, PNNL)

4 month reaction: Predict 52% of uraninite is lost
Observe 55% of uraninite is lost

2. Other possible explanation: dissolved trace solutes 
(e.g., silicate, 0.5 mM, Ca2+, 0.7 mM) retard U 
corrosion. 

UO2(s)

membranemembrane

UO2 UO2

UO2 distribution: 37d

Why is U mass loss so slow?
Two possible explanations:



Conclusions

• Modest diffusion limitation causes large decrease 
in U loss rate

• Diffusive barriers in natural sediments are likely to 
be much higher: very slow U release, even in oxic
ground water

• Presence of biomass further slows oxidation



• Modest diffusion limitation causes large decrease 
in U loss rate

• Diffusive barriers in natural sediments are likely to 
be much higher: very slow U release, even in oxic
ground water

• Presence of biomass further slows oxidation

• Suitable for bioremediation?  Very good prospects

• Implications for other forms of U(IV): 
• O2 diffusion limitation important for other forms 

of U(IV)
• Establishes lower limit for U(IV) release rates.

Conclusions



• Continue ongoing experiments for 21 months to 
establish rates over more realistic time scales

• Investigate stability of other forms of U(IV) (in 
progress):

• Biomass-sorbed U(IV)

• Mineral-sorbed U(IV)

Future directions
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