Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado

Calendar Year 2015

April 2016
This page intentionally left blank
Contents

Abbreviations ... xv
Executive Summary ... xxi

1.0 Introduction ... 1
 1.1 Purpose and Scope ... 2
 1.2 Background ... 3
 1.3 RFLMA Contact Records .. 3
 1.4 RFLMA Modifications .. 4

2.0 Site Operations and Maintenance ... 7
 2.1 Annual Site Inspection .. 7
 2.2 Pond Operations ... 7
 2.3 Landfills ... 8
 2.3.1 Present Landfill .. 8
 2.3.1.1 Inspection Results ... 8
 2.3.1.2 Slumps ... 9
 2.3.1.3 Settlement Monuments ... 9
 2.3.2 Original Landfill ... 9
 2.3.2.1 Inspection Results ... 9
 2.3.2.2 Settlement Monuments ... 10
 2.3.2.3 Geotechnical Evaluation .. 13
 2.3.2.4 Precipitation Response Repairs ... 13
 2.3.2.5 Inclinometers .. 14
 2.4 Former Building Area Inspections .. 14
 2.5 Site Road Maintenance .. 17
 2.6 Monitoring Well Maintenance .. 17
 2.6.1 Well Redevelopment ... 17
 2.7 Groundwater Plume Treatment Systems Maintenance ... 19
 2.7.1 Mound Site Plume Treatment System ... 19
 2.7.1.1 Flow Configuration .. 19
 2.7.1.2 Revisions of System Components ... 20
 2.7.1.3 Maintenance ... 20
 2.7.1.4 Operation .. 20
 2.7.2 East Trenches Plume Treatment System .. 21
 2.7.2.1 Flow Configuration .. 21
 2.7.2.2 Revisions of System Components ... 21
 2.7.2.3 Maintenance ... 23
 2.7.2.4 Operation .. 24
 2.7.3 Solar Ponds Plume Treatment System .. 24
 2.7.3.1 Flow Configuration .. 25
 2.7.3.2 Revisions of System Components ... 26
 2.7.3.3 Maintenance ... 26
 2.7.3.4 Operation .. 27
 2.8 Sign Inspection ... 27
 2.9 Erosion Control and Revegetation ... 28
 2.9.1 Erosion Control .. 28

3.0 Environmental Monitoring .. 29
 3.1 Water Monitoring ... 29
 3.1.1 Introduction .. 29
3.1.1 Water Monitoring Highlights: CY 2015

- Use of Analytical Data

3.1.2 Routine Monitoring

- POC Monitoring
- POE Monitoring
- AOC Wells and SW018
- Sentinel Wells
- Evaluation Wells
- PLF Monitoring
- OLF Monitoring
- Groundwater Treatment System Monitoring
- Predischarge Monitoring

3.1.3 Rocky Flats Hydrology

- General Hydrologic Setting
- Surface-Water Hydrologic Data Presentation
- Surface-Water Discharge Data Summaries
- Precipitation Data
- Groundwater Flow
- Seeps

3.1.4 Surface-Water Data Interpretation and Evaluation

- Surface-Water Quality Summaries
- Surface-Water Loading Analysis

3.1.5 Groundwater Data Interpretation and Evaluation

- RFLMA Groundwater Monitoring Activities of 2015
- Additional Groundwater Monitoring Activities of 2015
- Groundwater at the Rocky Flats Site: Discussion and Interpretations

3.1.6 High-Resolution U Isotopic Analyses

3.2 Ecological Monitoring at the Rocky Flats Site

- Introduction
- Vegetation Monitoring
- Site Flora
- Weed Mapping and Weed Control
- Revegetation Activities
- Interseeding/Revegetation Activities
- Habitat Enhancement Project Evaluations
- Volunteer Seed Collections/Forb Nursery Evaluations

- Revegetation Monitoring

- Photopoint Monitoring Results

- Wildlife Monitoring
- Prairie Dog Monitoring
- Nest Box Monitoring
- Raptor Nesting Observations
- Game Camera Video

- Preble’s Meadow Jumping Mouse Mitigation Monitoring

- Wetland Monitoring
- Woody Plant Species
- Noxious Weed Species
3.2.10.3 Climate Information ... 439
3.2.10.4 Wetland Monitoring Data ... 440
3.2.10.5 Wetland Delineations ... 443
3.2.11 Summary .. 445
3.3 Data Management .. 445
 3.3.1 Water Data .. 445
 3.3.2 Ecology Data ... 446
3.4 Validation and Data Quality Assessment ... 447
 3.4.1 General Discussion .. 447
 3.4.2 PARCC Parameters .. 448
 3.4.2.1 Criteria for Precision ... 449
 3.4.2.2 Criteria for Accuracy .. 449
 3.4.2.3 Criteria for Representativeness ... 450
 3.4.2.4 Criteria for Completeness ... 450
 3.4.2.5 Criteria for Comparability ... 451
 3.4.3 Water DQA Results for CY 2015 ... 451
 3.4.3.1 Precision During CY 2015 .. 452
 3.4.3.2 Accuracy During CY 2015 ... 453
 3.4.3.3 Representativeness During CY 2015 454
 3.4.3.4 Completeness During CY 2015 .. 454
 3.4.3.5 Comparability During CY 2015 .. 456
4.0 References .. 457

Figures

Figure 1. Original Landfill Observed Surface Cracks .. 11
Figure 2. OLF Regrade and Berm Repair Project ... 15
Figure 3. Rocky Flats Site Water Monitoring Locations and Precipitation Gages in CY 2015 .. 31
Figure 4. Vinyl Chloride Results from Evaluation Well 07391, Illustrating Variations in Detection Limits .. 34
Figure 5. Effects of Data Replacement on Statistical Trends Calculated for Cr in 2011 at PLF Well 73005 .. 35
Figure 6. POC Monitoring Locations ... 37
Figure 7. Volume-Weighted 30-Day Average Pu and Am Activities at WOMPOC: Year Ending Fourth Quarter CY 2015 .. 39
Figure 8. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WOMPOC: Year Ending Fourth Quarter CY 2015 40
Figure 9. Volume-Weighted 30-Day Average Total U Concentrations at WOMPOC: Year Ending Fourth Quarter CY 2015 40
Figure 10. Volume-Weighted 12-Month Rolling Average Total U Concentrations at WOMPOC: Year Ending Fourth Quarter CY 2015 41
Figure 11. Volume-Weighted 30-Day Average Pu and Am Activities at WALPOC: Year Ending Fourth Quarter CY 2015 42
Figure 12. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WALPOC: Year Ending Fourth Quarter CY 2015 42
Figure 42. Predischarge Sampling Locations

Figure 43. Major Site Drainage Areas—Walnut Creek, Woman Creek, and Rock Creek: End of CY 2015

Figure 44. Rocky Flats Site Water Routing Schematic: End of CY 2015

Figure 45. Annual Discharge Summary from Major Site Drainages: CY 1997–2015

Figure 46. Relative Total Discharge Summary from Major Site Drainages: Pre- and Post-Closure Periods

Figure 47. Annual Discharge Summary from COU Drainages: CY 2011–2015

Figure 48. Relative Total Discharge Summary from COU Drainages: CY 2011–2015

Figure 49. Pond Inflows: CY 1997–2015

Figure 50. Pond Outflows: CY 1997–2015

Figure 51. Relative Total Inflow Volumes for Site Ponds: Pre- and Post-Closure Periods

Figure 52. Relative Total Outflow Volumes for Site Ponds: Pre- and Post-Closure Periods

Figure 53. GS01 Drainage Area

Figure 54. CY 2015 Mean Daily Hydrograph at GS01: Woman Creek at Indiana Street

Figure 55. CY 1997–2015 Mean Daily Hydrograph at GS01: Woman Creek at Indiana Street

Figure 56. GS03 Drainage Area

Figure 57. CY 2015 Mean Daily Hydrograph at GS03: Walnut Creek at Indiana Street

Figure 58. CY 1997–2015 Mean Daily Hydrograph at GS03: Walnut Creek at Indiana Street

Figure 59. WOMPOC Drainage Area

Figure 60. CY 2015 Mean Daily Hydrograph at WOMPOC: Woman Creek at Eastern COU Boundary

Figure 61. CY 2011–2015 Mean Daily Hydrograph at WOMPOC: Woman Creek at Eastern COU Boundary

Figure 62. WALPOC Drainage Area

Figure 63. CY 2015 Mean Daily Hydrograph at WALPOC: Walnut Creek at Eastern COU Boundary

Figure 64. CY 2011–2015 Mean Daily Hydrograph at WALPOC: Walnut Creek at Eastern COU Boundary

Figure 65. GS05 Drainage Area

Figure 66. CY 2015 Mean Daily Hydrograph at GS05: North Woman Creek at West Fence Line

Figure 67. CY 1997–2015 Mean Daily Hydrograph at GS05: North Woman Creek at West Fence Line

Figure 68. GS08 Drainage Area

Figure 69. CY 2015 Mean Daily Hydrograph at GS08: South Walnut Creek at Pond B-5 Outlet

Figure 70. CY 1997–2015 Mean Daily Hydrograph at GS08: South Walnut Creek at Pond B-5 Outlet

Figure 71. GS10 Drainage Area

Figure 72. CY 2015 Mean Daily Hydrograph at GS10: South Walnut Creek at Former Pond B-1

Figure 73. CY 1997–2015 Mean Daily Hydrograph at GS10: South Walnut Creek at Former Pond B-1

Figure 74. GS11 Drainage Area
Figure 75. CY 2015 Mean Daily Hydrograph at GS11: North Walnut Creek at Pond A-4 Outlet ... 125
Figure 76. CY 1997–2015 Mean Daily Hydrograph at GS11: North Walnut Creek at Pond A-4 Outlet ... 125
Figure 77. GS12 Drainage Area.. 126
Figure 78. CY 2015 Mean Daily Hydrograph at GS12: North Walnut Creek at Former Pond A-3 Outlet ... 127
Figure 79. CY 1997–2015 Mean Daily Hydrograph at GS12: North Walnut Creek at Former Pond A-3 Outlet ... 127
Figure 80. GS13 Drainage Area.. 128
Figure 81. CY 2015 Mean Daily Hydrograph at GS13: North Walnut Creek at Former Pond A-1 .. 129
Figure 82. CY 2005–2015 Mean Daily Hydrograph at GS13: North Walnut Creek at Former Pond A-1 .. 129
Figure 83. GS31 Drainage Area.. 130
Figure 84. CY 2015 Mean Daily Hydrograph at GS31: Woman Creek at Pond C-2 Outlet ... 131
Figure 85. CY 1997–2015 Mean Daily Hydrograph at GS31: Woman Creek at Pond C-2 Outlet ... 131
Figure 86. GS33 Drainage Area.. 132
Figure 87. CY 2015 Mean Daily Hydrograph at GS33: No Name Gulch at Walnut Creek ... 133
Figure 88. CY 1997–2015 Mean Daily Hydrograph at GS33: No Name Gulch at Walnut Creek ... 133
Figure 89. GS51 Drainage Area.. 134
Figure 90. CY 2015 Mean Daily Hydrograph at GS51: Ditch South of Former 903 Pad ... 135
Figure 91. CY 2001–2015 Mean Daily Hydrograph at GS51: Ditch South of Former 903 Pad ... 135
Figure 92. GS59 Drainage Area.. 136
Figure 93. CY 2015 Mean Daily Hydrograph at GS59: Woman Creek Upstream of Antelope Springs Confluence .. 137
Figure 94. CY 2002–2015 Mean Daily Hydrograph at GS59: Woman Creek Upstream of Antelope Springs Confluence .. 137
Figure 95. B5INFLOW Drainage Area.. 138
Figure 96. CY 2015 Mean Daily Hydrograph at B5INFLOW: South Walnut Creek Upstream of Pond B-5 ... 139
Figure 97. CY 2010–2015 Mean Daily Hydrograph at B5INFLOW: South Walnut Creek Upstream of Pond B-5 ... 139
Figure 98. SW027 Drainage Area.. 140
Figure 99. CY 2015 Mean Daily Hydrograph at SW027: SID at Pond C-2.. 141
Figure 100. CY 1997–2015 Mean Daily Hydrograph at SW027: SID at Pond C-2.. 141
Figure 101. SW093 Drainage Area.. 142
Figure 102. CY 2015 Mean Daily Hydrograph at SW093: North Walnut Creek Upstream of Former Pond A-1 Bypass .. 143
Figure 103. CY 1997–2015 Mean Daily Hydrograph at SW093: North Walnut Creek Upstream of Former Pond A-1 Bypass .. 143
Figure 104. Site Precipitation Gages: CY 2015 ... 145
Figure 105. Annual Total Precipitation for CY 1997–2015.. 145
Figure 106. Average Monthly Precipitation for CY 1997–2015.. 146
Figure 107. Relative Monthly Precipitation Totals for CY 1997–2015.. 146
Figure 108. Monthly Precipitation for CY 2015 ... 147
Figure 109. Relative Monthly Precipitation Volumes for CY 2015 147
Figure 110. Daily Precipitation Totals for CY 2015 .. 148
Figure 111. UHSU Potentiometric Contours: Second Quarter CY 2015 151
Figure 112. UHSU Potentiometric Contours: Fourth Quarter CY 2015 152
Figure 113. Example of a Hydrograph with Water Level Data from Existing and Predecessor Wells ... 154
Figure 114. Hydrographs Showing Seasonality at Rocky Flats .. 155
Figure 115. Example Hydrographs Showing a Water Level Rise of More Than 10 Feet in 2015 ... 156
Figure 116. Distribution of Wells Showing a Water Level Rise of 10 Feet or More in 2015 157
Figure 117. Hydrographs Comparing Rapid vs. Slow Recovery From High-Volume Purging ... 159
Figure 118. Aerial Photo of OLF with Hydrographs for Nearby Wells.................................. 161
Figure 119. Single Plot Combining Water Level Data for Wells Near OLF 162
Figure 120. Seeps and Wet Areas, Updated to Include Observations in 2015 171
Figure 121. Median Pu-239,240 Activities for CY 1997–October 13, 2005 176
Figure 122. Post-Closure Median Pu-239,240 Activities ... 177
Figure 123. Median Am-241 Activities for CY 1997—October 13, 2005 179
Figure 124. Post-Closure Median Am-241 Activities .. 180
Figure 125. Median Total U Concentrations for CY 1997—October 13, 2005 183
Figure 126. Post-Closure Median Total U Concentrations .. 184
Figure 127. Post-Closure Median Nitrate+Nitrite as Nitrogen Concentrations 186
Figure 128. Average Pu/Am Ratios for CY 1997—October 13, 2005 188
Figure 129. Post-Closure Average Pu/Am Ratios ... 189
Figure 130. Relative Average Annual Pu Loading Schematic: CY 1997–2005 194
Figure 131. Relative Average Annual Pu Loading Schematic: CY 2006–2015 195
Figure 132. Relative Average Annual Am Loading Schematic: CY 1997–2005 196
Figure 133. Relative Average Annual Am Loading Schematic: CY 2006–2015 197
Figure 134. Relative Average Annual Total U Loading Schematic: CY 2003–2005 199
Figure 135. Relative Average Annual Total U Loading Schematic: CY 2006–2015 200
Figure 136. Combined Annual Pu and Am Loads from Walnut and Woman Creeks at Indiana Street: CY 1997–2015 ... 201
Figure 137. Annual Pu Loads from Walnut and Woman Creeks at Indiana Street: CY 1997–2015 .. 201
Figure 138. Relative Average Annual Pu Load Totals from Walnut and Woman Creeks at Indiana Street ... 202
Figure 139. Annual Am Loads from Walnut and Woman Creeks at Indiana Street: CY 1997–2015 .. 203
Figure 140. Relative Average Annual Am Load Totals from Walnut and Woman Creeks at Indiana Street ... 203
Figure 141. Annual Total U Loads from Walnut and Woman Creeks at Indiana Street: CY 2003–2015 .. 204
Figure 142. Relative Average Annual Total U Load Totals from Walnut and Woman Creeks at Indiana Street ... 205
Figure 143. Combined Annual Pu and Am Loads from Walnut and Woman Creeks at Eastern COU Boundary: CY 2011–2015 ... 208
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>Annual Pu Loads from Walnut and Woman Creeks at Eastern COU Boundary: CY 2011–2015</td>
</tr>
<tr>
<td>145</td>
<td>Annual Am Loads from Walnut and Woman Creeks at Eastern COU Boundary: CY 2011–2015</td>
</tr>
<tr>
<td>146</td>
<td>Annual Total U Loads from Walnut and Woman Creeks at Eastern COU Boundary: CY 2011–2015</td>
</tr>
<tr>
<td>147</td>
<td>Annual Pu and Am Loads at GS03: CY 1997–2015</td>
</tr>
<tr>
<td>148</td>
<td>Annual Pu Loads at GS03, GS08, and GS11: CY 1997–2015</td>
</tr>
<tr>
<td>149</td>
<td>Annual Pu Loads at GS03, GS08, GS11, and WALPOC: CY 2011–2015</td>
</tr>
<tr>
<td>150</td>
<td>Relative Average Annual Pu Load Totals at GS03, GS08, and GS11</td>
</tr>
<tr>
<td>151</td>
<td>Annual Am Loads at GS03, GS08, and GS11: CY 1997–2015</td>
</tr>
<tr>
<td>152</td>
<td>Annual Am Loads at GS03, GS08, GS11, and WALPOC: CY 2011–2015</td>
</tr>
<tr>
<td>153</td>
<td>Relative Average Annual Am Load Totals at GS03, GS08, and GS11</td>
</tr>
<tr>
<td>154</td>
<td>Annual Total U Loads at GS03, GS08, and GS11: CY 2003–2015</td>
</tr>
<tr>
<td>155</td>
<td>Annual Total U Loads at GS03, GS08, GS11, and WALPOC: CY 2011–2015</td>
</tr>
<tr>
<td>156</td>
<td>Relative Average Annual Total U Load Totals at GS03, GS08, and GS11</td>
</tr>
<tr>
<td>157</td>
<td>Annual Pu and Am Loads at GS01: CY 1997–2015</td>
</tr>
<tr>
<td>158</td>
<td>Annual Pu Loads at GS01 and GS31: CY 1997–2015</td>
</tr>
<tr>
<td>159</td>
<td>Annual Pu Loads at GS01, WOMPOC, and GS31: CY 2011–2015</td>
</tr>
<tr>
<td>160</td>
<td>Relative Average Annual Pu Load Totals at GS01 and GS31</td>
</tr>
<tr>
<td>161</td>
<td>Annual Am Loads at GS01 and GS31: CY 1997–2015</td>
</tr>
<tr>
<td>162</td>
<td>Annual Am Loads at GS01, WOMPOC, and GS31: CY 2011–2015</td>
</tr>
<tr>
<td>163</td>
<td>Relative Average Annual Am Load Totals at GS01 and GS31</td>
</tr>
<tr>
<td>164</td>
<td>Annual Total U Loads at GS01 and GS31: CY 2003–2015</td>
</tr>
<tr>
<td>165</td>
<td>Annual Total U Loads at GS01, WOMPOC, and GS31: CY 2011–2015</td>
</tr>
<tr>
<td>166</td>
<td>Relative Average Annual Total U Load Totals at GS01 and GS31</td>
</tr>
<tr>
<td>168</td>
<td>Relative Average Annual Pu Load Totals for the A- and B-Series Ponds</td>
</tr>
<tr>
<td>170</td>
<td>Relative Average Annual Am Load Totals for the A- and B-Series Ponds</td>
</tr>
<tr>
<td>171</td>
<td>Relative Average Annual Total U Loading Schematic for the A- and B-Series Ponds: CY 1997–2005</td>
</tr>
<tr>
<td>174</td>
<td>Relative Average Annual Total U Load Totals for the A- and B-Series Ponds</td>
</tr>
<tr>
<td>175</td>
<td>Annual Pu Loads for Pond C-2: CY 1997–2015</td>
</tr>
<tr>
<td>176</td>
<td>Relative Average Annual Pu Load Totals for Pond C-2</td>
</tr>
<tr>
<td>177</td>
<td>Annual Am Loads for Pond C-2: CY 1997–2015</td>
</tr>
<tr>
<td>178</td>
<td>Relative Average Annual Am Load Totals for Pond C-2</td>
</tr>
<tr>
<td>179</td>
<td>Relative Average Annual U Loading Schematic for Pond C-2: CY 1997–2005</td>
</tr>
<tr>
<td>180</td>
<td>Relative Average Annual U Loading Schematic for Pond C-2: CY 2006–2015</td>
</tr>
<tr>
<td>182</td>
<td>Relative Average Annual Total U Load Totals for Pond C-2</td>
</tr>
<tr>
<td>183</td>
<td>Combined Annual Pu Loads from Former IA Drainages: CY 1997–2015</td>
</tr>
<tr>
<td>184</td>
<td>Relative Average Annual Pu Load Totals from Former IA Drainages and WWTP</td>
</tr>
<tr>
<td>185</td>
<td>Annual Am Loads from Former IA Drainages and WWTP: CY 1997–2015</td>
</tr>
</tbody>
</table>
Figure 186. Relative Average Annual Am Load Totals from Former IA Drainages and WWTP ... 258
Figure 187. Annual Pu and Am Loads at GS10: CY 1997–2015 .. 259
Figure 188. Annual Pu and Am Loads at the WWTP: CY 1997–2015 .. 259
Figure 189. Annual Pu and Am Loads at SW027: CY 1997–2015 .. 260
Figure 190. Annual Pu and Am Loads at SW093: CY 1997–2015 ... 260
Figure 191. Annual Total U Loads from Former IA Drainages and WWTP: CY 1997–2015 261
Figure 192. Relative Average Annual Total U Loads from Former IA Drainages and WWTP 262
Figure 193. Primary VOCs in Mound Plume Source-Area Well 00897 ... 278
Figure 194. Primary VOCs in OBP #2 Source Area Well 91105 (and Predecessors) 280
Figure 195. Primary VOCs in Downgradient Mound/MSPTS Well 15699 .. 282
Figure 196. Primary VOCs in Sentinel Well 91203 .. 283
Figure 197. Estimated Annual and Cumulative Volumes Treated by the MSPTS 286
Figure 198. Hydrograph for MSPTS from 2000 Through 2015 ... 287
Figure 199. Hydrograph for MSPTS for 2015 .. 288
Figure 200. Total VOCs in MSPTS Influent and Effluent, 2000 Through 2015 289
Figure 201. Concentrations of Primary VOCs in MSPTS Influent .. 291
Figure 202. Most Commonly Detected VOCs in Sentinel Wells Downgradient of the ETPTS 301
Figure 203. Concentrations of U in Samples from Well 23296 ... 304
Figure 204. Estimated Annual and Cumulative Volumes Treated by the ETPTS 307
Figure 205. Hydrograph for ETPTS from 2000 Through 2015 ... 308
Figure 206. Hydrograph for ETPTS for CY 2015 .. 308
Figure 207. Primary VOCs in ETPTS Influent .. 314
Figure 208. Total Detected VOCs in ETPTS Influent and Effluent ... 315
Figure 209. Close-ups Showing Effectiveness and Testing of New ETPTS Air Stripper 318
Figure 210. Concentrations of Nitrate in SPP Source-Area Evaluation Wells 322
Figure 211. Concentrations of U in SPP Source-Area Evaluation Wells ... 324
Figure 212. Nitrate Concentrations Downgradient of the Former SEPs ... 326
Figure 213. U Concentrations Downgradient of the Former SEPs ... 327
Figure 214. Primary VOCs in SEP VOC Plume Wells .. 330
Figure 215. Estimated Annual and Cumulative Volumes Treated by the SPPTS 333
Figure 216. Hydrograph for SPPTS from 2000 Through 2015 ... 334
Figure 217. Hydrograph for SPPTS for CY 2015 ... 335
Figure 218. Schematic showing major components of the SPPTS ... 336
Figure 219. Concentrations of Nitrate at Selected SPPTS Monitoring Locations 339
Figure 220. Concentrations of Uranium at Selected SPPTS Monitoring Locations 341
Figure 221. Nitrate vs. Water Temperature in Pilot-Scale Lagoons ... 344
Figure 222. Overall Treatment Performance of SPPTS Phase III Pilot-Scale Lagoons 347
Figure 223. Nitrate, Nitrite, and Ammonia in Effluent from SPPTS Phase III Pilot-Scale Lagoons 348
Figure 224. Total and Dissolved Organic Carbon in Effluent from SPPTS Phase III Pilot-Scale Lagoons .. 349
Figure 225. Effluent Water Sample at Beginning, Middle, and End of Settling and Sand-Filter Test ... 354
Figure 226. Examples of Microcell Data from Testing in 2015 .. 358
Figure 227. Schematic showing main components of SPPTS following the Interim Reconfiguration Project ... 361
Figure 228. Primary VOCs in Ryan’s Pit Source-Area Well 07391 ... 363
Figure 229. Primary VOCs in 903 Pad/Ryan’s Pit Plume Sentinel Wells 90299 and 90399 ... 364
Figure 230. Concentrations of Uranium at Ryan’s Pit Source-Area Well 07391 365
Figure 231. Woman Creek Grab-Sampling Location SW10200................................. 367
Figure 232. Concentrations of Uranium at Lower Woman Creek AOC Wells 10304 and 00193.. 368
Figure 233. Concentrations of VOCs in South IA Plume Source-Area Well 40005 370
Figure 234. Photographs Showing Evolution of Vinyl Chloride Plume Source Area 373
Figure 235. Primary VOCs in the VC Plume Evaluation and Sentinel Wells 375
Figure 236. Chlorinated Benzene Compounds in Samples from VC Plume Evaluation Wells .. 377
Figure 237. Chlorinated Benzene Compounds in Samples from Sentinel Well 33711 378
Figure 238. Concentrations of VOCs in IHSS 118.1 Plume Source-Area Evaluation Well 18199... 380
Figure 239. U in Groundwater Along North Side of Former B771.. 382
Figure 240. Concentrations of Primary PU&D Yard Plume VOCs in Upgradient PLF RCRA Wells .. 384
Figure 241. Concentrations of Nitrate and U in Groundwater Samples from AOC Well B206989 ... 387
Figure 242. Concentrations of Nitrate and U in Groundwater Samples from AOC Well 4087 ... 388
Figure 243. Concentrations of Primary VOCs in B991-Area Groundwater 389
Figure 244. Concentrations of U in B991 Sentinel Wells ... 391
Figure 245. Concentrations of VOCs in Sentinel Well 45608, South of Former B991 393
Figure 246. Concentrations of Uranium in Samples from Sentinel Well 91305 395
Figure 247. 2015 Diffuse Knapweed (Centaurea diffusa) Distribution 401
Figure 248. 2015 Dalmatian Toadflax (Linaria dalmatica) Distribution 402
Figure 249. 2015 Miscellaneous Weed Species Locations ... 403
Figure 250. Rocky Flats Site Herbicide Application Locations 2015 404
Figure 251. Rocky Flats Site 2015 Spot Spray Herbicide Application Locations 405
Figure 252. 2015 Revegetation, Interseeding, and Planting Locations 406
Figure 253. Habitat Enhancement Locations at the Rocky Flats Site 409
Figure 254. Forb Nursery Monitoring Locations 2015 ... 410
Figure 255. Rocky Flats Site 2015 Revegetation Monitoring Locations 415
Figure 256. Prairie Dog Town Locations Within or Near the Central Operable Unit at Rocky Flats .. 427
Figure 257. Rocky Flats Site Nest Box Locations ... 431
Figure 258. Raptor Nest Locations, Central Operable Unit, Rocky Flats Site 2015 432
Figure 259. Rocky Flats Site 2015 Wetland Mitigation Monitoring Locations 433
Figure 260. Rocky Flats Site 2015 Wetland Mitigation Monitoring Locations: A-3 Dam Breach Area .. 434
Figure 261. Rocky Flats Site 2015 Wetland Mitigation Monitoring Locations: PLF Area 435
Figure 262. Rocky Flats Site 2015 Wetland Mitigation Monitoring Locations: POC Flumes ... 436
Figure 263. Rocky Flats Site 2015 Wetland Mitigation Monitoring Locations: GS10 437
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Status of RFLMA Contact Records</td>
<td>5</td>
</tr>
<tr>
<td>Table 2</td>
<td>Summary of 2015 Well Redevelopment Activities</td>
<td>18</td>
</tr>
<tr>
<td>Table 3</td>
<td>Hypothetical Example Illustrating Effects of Detection Limits and Data Replacement on Statistical Calculations</td>
<td>35</td>
</tr>
<tr>
<td>Table 4</td>
<td>Uranium Isotope Conversion Factors Used in Groundwater Evaluations</td>
<td>36</td>
</tr>
<tr>
<td>Table 5</td>
<td>Sampling and Data Evaluation Protocols at POCs</td>
<td>38</td>
</tr>
<tr>
<td>Table 6</td>
<td>Annual Volume-Weighted Average Radionuclide Activities at WOMPOC for 2011–2015</td>
<td>39</td>
</tr>
<tr>
<td>Table 7</td>
<td>Annual Volume-Weighted Average Radionuclide Activities and Nitrate+Nitrite as Nitrogen Concentrations at WALPOC for 2011–2015</td>
<td>41</td>
</tr>
<tr>
<td>Table 8</td>
<td>Sampling and Data Evaluation Protocols at POEs</td>
<td>45</td>
</tr>
<tr>
<td>Table 9</td>
<td>Annual Volume-Weighted Average Radionuclide Activities at GS10 for 1997–2015</td>
<td>47</td>
</tr>
<tr>
<td>Table 10</td>
<td>Annual Volume-Weighted Average Hardness and Metals Concentrations at GS10 for 1997–2015</td>
<td>50</td>
</tr>
<tr>
<td>Table 11</td>
<td>Annual Volume-Weighted Average Radionuclide Activities at SW027 for 1997–2015</td>
<td>53</td>
</tr>
<tr>
<td>Table 12</td>
<td>CY 2015 Composite Sampling Results at SW027</td>
<td>55</td>
</tr>
<tr>
<td>Table 13</td>
<td>CY 2015 Composite Sampling Results at WOMPOC</td>
<td>58</td>
</tr>
<tr>
<td>Table 14</td>
<td>Annual Volume-Weighted Average Hardness and Metals Concentrations at SW027 for 1997–2015</td>
<td>59</td>
</tr>
<tr>
<td>Table 15</td>
<td>Annual Volume-Weighted Average Radionuclide Activities at SW093 for 1997–2015</td>
<td>63</td>
</tr>
<tr>
<td>Table 16</td>
<td>Annual Volume-Weighted Average Hardness and Metals Concentrations at SW093 for 1997–2015</td>
<td>66</td>
</tr>
<tr>
<td>Table 17</td>
<td>Sampling and Data Evaluation Protocols at AOC Wells and Surface Water Support Location</td>
<td>69</td>
</tr>
<tr>
<td>Table 18</td>
<td>Sampling and Data Evaluation Protocols at Sentinel Wells</td>
<td>72</td>
</tr>
<tr>
<td>Table 19</td>
<td>Sampling and Data Evaluation Protocols at Evaluation Wells</td>
<td>75</td>
</tr>
<tr>
<td>Table 20</td>
<td>Sampling and Data Evaluation Protocols at PLF RCRA Monitoring Wells</td>
<td>78</td>
</tr>
<tr>
<td>Table 21</td>
<td>RCRA Groundwater Sampling Performed in 2015 at the PLF</td>
<td>79</td>
</tr>
<tr>
<td>Table 22</td>
<td>Results of Statistical Testing: ANOVA Evaluation for 2015 at the PLF</td>
<td>80</td>
</tr>
<tr>
<td>Table 23</td>
<td>Results of Statistical Testing: Increasing Trends in 2015 at PLF Downgradient Wells</td>
<td>81</td>
</tr>
<tr>
<td>Table 24</td>
<td>Sampling and Data Evaluation Protocols at OLF Surface-Water Monitoring Locations</td>
<td>84</td>
</tr>
<tr>
<td>Table 25</td>
<td>Sampling and Data Evaluation Protocols at OLF RCRA Monitoring Wells</td>
<td>84</td>
</tr>
<tr>
<td>Table 26</td>
<td>RCRA Groundwater Sampling Performed in 2015 at the OLF</td>
<td>85</td>
</tr>
<tr>
<td>Table 27</td>
<td>Results of Statistical Testing: ANOVA Evaluation for 2015 at the OLF</td>
<td>86</td>
</tr>
<tr>
<td>Table 28</td>
<td>Results of Statistical Testing: Increasing Trends in 2015 at OLF Downgradient Wells</td>
<td>86</td>
</tr>
<tr>
<td>Table 29</td>
<td>RFLMA Sampling and Data Evaluation Protocols at MSPTS Monitoring Locations</td>
<td>90</td>
</tr>
<tr>
<td>Table 30</td>
<td>RFLMA Sampling and Data Evaluation Protocols at ETPTS Monitoring Locations</td>
<td>91</td>
</tr>
</tbody>
</table>
Table 31. RFLMA Sampling and Data Evaluation Protocols at SPPTS Monitoring Locations ... 92
Table 32. Sampling and Data Evaluation Protocols at PLFTS Monitoring Locations ... 94
Table 33. Sampling and Data Evaluation Protocols at Predischarge Monitoring Locations ... 96
Table 34. Monitoring Network Precipitation Gage Information ... 144
Table 35. Total CY 2015 Monthly Precipitation Data for the Site ... 148
Table 36. Precipitation in CY 2015 Compared with Average Precipitation for Prior Years, by Quarter ... 149
Table 37. Calculated Flow Velocities for 2015 ... 164
Table 38. Pre-Closure Summary Statistics for Pu-239,240 Analytical Results (January 1, 1997–October 13, 2005) ... 174
Table 39. Post-Closure Summary Statistics for Pu-239,240 Analytical Results (October 13, 2005–December 31, 2015) ... 175
Table 40. Pre-Closure Summary Statistics for Am-241 Analytical Results (January 1, 1997–October 13, 2005) ... 178
Table 41. Post-Closure Summary Statistics for Am-241 Analytical Results (October 13, 2005–December 31, 2015) ... 178
Table 42. Pre-Closure Summary Statistics for Total U Analytical Results (January 1, 1997–October 13, 2005) ... 181
Table 43. Post-Closure Summary Statistics for Total U Analytical Results (October 13, 2005–December 31, 2015) ... 182
Table 44. Post-Closure Summary Statistics for Nitrate+Nitrite as Nitrogen Analytical Results (October 13, 2005–December 31, 2015) ... 185
Table 45. Pre-Closure Average Pu/Am Ratios for Analytical Results (January 1, 1997–October 13, 2005) ... 185
Table 46. Post-Closure Average Pu/Am Ratios for Analytical Results (October 13, 2005–December 31, 2015) ... 187
Table 47. Pre-Closure Summary Statistics for POE Metals Results from GS10 (January 1, 1997–October 13, 2005) ... 190
Table 48. Post-Closure Summary Statistics for POE Metals Results from GS10 (October 13, 2005–December 31, 2015) ... 190
Table 49. Pre-Closure Summary Statistics for POE Metals Results from SW027 (January 1, 1997–October 13, 2005) ... 191
Table 50. Post-Closure Summary Statistics for POE Metals Results from SW027 (October 13, 2005–December 31, 2015) ... 191
Table 51. Pre-Closure Summary Statistics for POE Metals Results from SW093 (January 1, 1997–October 13, 2005) ... 191
Table 52. Post-Closure Summary Statistics for POE Metals Results from SW093 (October 13, 2005–December 31, 2015) ... 191
Table 53. Activity-to-Mass Conversion Factors for Pu, Am, and U Isotopes ... 192
Table 54. Pu and Am Loads from Walnut and Woman Creeks at Indiana Street: CY 1997–2015 ... 206
Table 55. Total U Loads from Walnut and Woman Creeks at Indiana Street: CY 2003–2015 ... 207
Table 56. Offsite Pu and Am Loads from Walnut and Woman Creeks at Eastern COU Boundary: CY 2011–2015 ... 210
Table 57. Total U Loads from Walnut and Woman Creeks at Eastern COU Boundary: CY 2011–2015 ... 210
Table 58. Pu Loads at GS03, GS08, GS11, and WALPOC: CY 1997–2015 211
Table 59. Am Loads at GS03, GS08, GS11, and WALPOC: CY 1997–2015 212
Table 60. Total U Loads at GS03, GS08, GS11, and WALPOC: CY 2003–2015 213
Table 61. Pu Loads at GS01, WOMPOC, and GS31: CY 1997–2015 221
Table 62. Am Loads at GS01, WOMPOC, and GS31: CY 1997–2015 222
Table 63. Total U Loads at GS01, WOMPOC, and GS31: CY 2003–2015 223
Table 64. Pu Load Summary for the A- and B-Series Ponds: CY 1997–2015 231
Table 66. Total U Load Summary for the A- and B-Series Ponds: CY 1997–2015 233
Table 67. Pu Load Summary for Terminal Pond C-2: CY 1997–2015 242
Table 68. Am Load Summary for Terminal Pond C-2: CY 1997–2015 243
Table 69. Total U Load Summary for Terminal Pond C-2: CY 1997–2015 244
Table 70. Former IA Drainage Pu and Am Loads: CY 1997–2015 254
Table 71. Former IA Total U Loads: CY 1997–2015 .. 255
Table 72. RFLMA Monitoring Classifications for the Groundwater Monitoring Network . 263
Table 73. Summary of Scheduled RFLMA-Required Groundwater Sampling in CY 2015 (by Quarter) ... 264
Table 74. Summary of Non-RFLMA-Required Groundwater Samples Collected in CY 2015 (by Quarter) ... 267
Table 75. Summary of Statistical Trend Calculations Through 2015 by Location 271
Table 76. Estimated Volumes of Water Treated by the MSPTS 285
Table 77. Average Volumes Treated by the MSPTS ... 287
Table 78. Summary of VOC Data (µg/L) for MSPTS Influent and Effluent 293
Table 79. Average Contaminant Concentrations (µg/L)* in MSPTS Influent, Pre- vs. Post-Closure .. 295
Table 80. Summary of VOCs Detected in 2015 at GS10 297
Table 81. Estimated Volumes of Water Treated by the ETPTS 306
Table 82. Average Volumes Treated by the ETPTS .. 307
Table 83. Summary of VOC Data (µg/L) for ETPTS Influent and Effluent 310
Table 84. Average Contaminant Concentrations (µg/L)* in ETPTS Influent, Pre- vs. Post-Closure .. 313
Table 85. Summary of VOCs Detected in 2015 at POM2 316
Table 86. Estimated Volumes of Water Treated by the SPPTS 322
Table 87. Average Volumes Treated by the SPPTS .. 334
Table 88. Summary of SPPTS Construction and Upgrades 337
Table 89. Summary and Results of Bench Tests Performed to Clarify Lagoon Effluent 352
Table 90. Summary of Microcells Tested in 2015 .. 356
Table 91. Summary of LBNL High-Resolution U Isotopic Results for Samples Collected In 2015 .. 397
Table 92. 2015 Revegetation Location Summary .. 400
Table 93. Forb Nursery Abundance Summary 2010–2015 411
Table 94. Species Seeded By Location and 2015 Total Species Richness Summary 417
Table 95. Revegetation Locations Foliar Cover Summary 2015 419
Table 96. Basal Cover Summary at Revegetation Locations 2015 421
Table 97. Evaluation of Successional Changes in Plant Community Composition at Revegetation Locations .. 423
Table 98. Success Criteria Evaluation Summary 2015 ... 425
Table 99. Nest Box Summary 2015 .. 429
Appendixes

Appendix A Hydrologic Data
Appendix B Water-Quality Data
Appendix C Landfill Inspection Forms—Fourth Quarter CY 2015
Appendix D Data Evaluation Flowcharts Reproduced from RFLMA and the RFSOG
Appendix E U Isotopic Compositions and Concentrations of Rocky Flats Water Samples Submitted to LBNL
Appendix F 2015 RFLMA Contact Records

Available on DVD:
Ecology DVD: 2015 Annual RFS Ecology Reports
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>ac-ft</td>
<td>acre-feet</td>
</tr>
<tr>
<td>Ag</td>
<td>silver</td>
</tr>
<tr>
<td>Am</td>
<td>americium</td>
</tr>
<tr>
<td>AMP</td>
<td>Adaptive Management Plan</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOC</td>
<td>Area of Concern</td>
</tr>
<tr>
<td>B</td>
<td>boron</td>
</tr>
<tr>
<td>B<nnn></td>
<td>building number (for example, B371 = Building 371)</td>
</tr>
<tr>
<td>Be</td>
<td>beryllium</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>CAD/ROD</td>
<td>Corrective Action Decision/Record of Decision</td>
</tr>
<tr>
<td>Cd</td>
<td>cadmium</td>
</tr>
<tr>
<td>CDPHE</td>
<td>Colorado Department of Public Health and Environment</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act (also known as “Superfund”)</td>
</tr>
<tr>
<td>cfs</td>
<td>cubic feet per second</td>
</tr>
<tr>
<td>COU</td>
<td>Central Operable Unit</td>
</tr>
<tr>
<td>Cr</td>
<td>chromium</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>CY</td>
<td>calendar year</td>
</tr>
<tr>
<td>DCB</td>
<td>dichlorobenzene</td>
</tr>
<tr>
<td>DCE</td>
<td>dichloroethene</td>
</tr>
<tr>
<td>DER</td>
<td>duplicate error ratio</td>
</tr>
<tr>
<td>DG</td>
<td>Discharge Gallery</td>
</tr>
<tr>
<td>dh/dl</td>
<td>hydraulic gradient</td>
</tr>
<tr>
<td>DNAPL</td>
<td>dense nonaqueous-phase liquid</td>
</tr>
<tr>
<td>DOC</td>
<td>dissolved organic carbon</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DQA</td>
<td>data quality assessment</td>
</tr>
<tr>
<td>DUP</td>
<td>duplicate sample</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>µg/L</td>
<td>micrograms per liter (sometimes expressed as ug/L)</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
</tr>
<tr>
<td>MS</td>
<td>matrix spike</td>
</tr>
<tr>
<td>MSD</td>
<td>matrix spike duplicate</td>
</tr>
<tr>
<td>MSPTS</td>
<td>Mound Site Plume Treatment System</td>
</tr>
<tr>
<td>n</td>
<td>effective porosity</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>Ni</td>
<td>nickel</td>
</tr>
<tr>
<td>NOIPD</td>
<td>Notice of Intent for Partial Deletion</td>
</tr>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>NREL</td>
<td>National Renewable Energy Laboratory</td>
</tr>
<tr>
<td>OBP</td>
<td>Oil Burn Pit</td>
</tr>
<tr>
<td>OLF</td>
<td>Original Landfill</td>
</tr>
<tr>
<td>OU</td>
<td>operable unit</td>
</tr>
<tr>
<td>PARCC</td>
<td>precision, accuracy, representativeness, completeness, and comparability</td>
</tr>
<tr>
<td>PBA</td>
<td>Programmatic Biological Assessment</td>
</tr>
<tr>
<td>PCE</td>
<td>tetrachloroethene</td>
</tr>
<tr>
<td>pCi</td>
<td>picocuries</td>
</tr>
<tr>
<td>pCi/L</td>
<td>picocuries per liter</td>
</tr>
<tr>
<td>PIP</td>
<td>Public Involvement Plan</td>
</tr>
<tr>
<td>PLF</td>
<td>Present Landfill</td>
</tr>
<tr>
<td>PLFTS</td>
<td>Present Landfill Treatment System</td>
</tr>
<tr>
<td>POC</td>
<td>Point of Compliance</td>
</tr>
<tr>
<td>POE</td>
<td>Point of Evaluation</td>
</tr>
<tr>
<td>POU</td>
<td>Peripheral Operable Unit</td>
</tr>
<tr>
<td>PQL</td>
<td>practical quantitation limit</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>Pu</td>
<td>plutonium</td>
</tr>
<tr>
<td>PU&D</td>
<td>Property Utilization and Disposal</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>R</td>
<td>For sampling data, a laboratory and/or validation qualifier that indicates a value rejected as unusable.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>WQP</td>
<td>water quality parameter</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater Treatment Plant</td>
</tr>
<tr>
<td>Zn</td>
<td>zinc</td>
</tr>
<tr>
<td>ZVI</td>
<td>zero-valent iron</td>
</tr>
</tbody>
</table>
Executive Summary

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is responsible for implementing the final response action selected in the final Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit (CAD/ROD) (DOE 2006a) issued September 29, 2006, for the Rocky Flats Site (Site or RFS).

Under the CAD/ROD, two operable units were established within the boundaries of the Rocky Flats property: the Peripheral Operable Unit (POU) and the Central Operable Unit (COU). The COU consolidates all areas of the Site that require additional remedial or corrective actions while also considering practicalities of future land management. The POU includes the remaining, generally unimpacted portions of the Site and surrounds the COU. The response action in the Final CAD/ROD is no action for the POU and institutional and physical controls with continued monitoring for the COU. The CAD/ROD determined that conditions in the POU were suitable for unrestricted use. The U.S. Environmental Protection Agency (EPA) subsequently published a Notice of Partial Deletion from the National Priorities List for the POU on May 25, 2007.

DOE, EPA, and the Colorado Department of Public Health and Environment (CDPHE) have chosen to implement the monitoring and maintenance requirements of the CAD/ROD under, and as described in, the Rocky Flats Legacy Management Agreement (RFLMA), executed March 14, 2007, and subsequently revised in 2012 (CDPHE et al. 2012). RFLMA Attachment 2 defines the COU remedy surveillance and maintenance requirements. The requirements include environmental monitoring; maintenance of the erosion controls, access controls (signs), landfill covers, and groundwater treatment systems; and operation of the groundwater treatment systems.

LM prepared and updates the Rocky Flats Site Operations Guide (DOE 2013b). It is the primary document to guide work performed to satisfy the requirements of RFLMA and to implement best management practices at the Site.

This report addresses surveillance and maintenance activities conducted at the Site during calendar year (CY) 2015 (January 1 through December 31, 2015). Highlights of the surveillance and maintenance activities are as follows:

- Extremely heavy precipitation was recorded in CY 2015, specifically in the first two quarters of the year. By the end of July the Site had received 14.76 inches of precipitation. Historically, the Site receives an average of 12.07 inches of precipitation annually. As a result of this heavy precipitation, groundwater levels were higher in 2015, as were flows to the groundwater treatment systems.

- The RFLMA references the use of contact records to document CDPHE approvals of field modifications to implement approved response actions. RFLMA Attachment 2 references the use of contact records to document the outcome of consultation related to addressing any reportable conditions. This report discusses the 10 RFLMA contact records issued in 2015 and the contact record status as of December 31, 2015.

- The Original Landfill (OLF) was inspected monthly during CY 2015. In addition, nine weather-related inspections were also conducted as a result of the heavy precipitation the Site received. Even with all the precipitation during CY 2015 the majority of the OLF and the waste footprint remained stable. In August and September, an interim action project was
performed to smooth cracking and slumping observed in isolated areas. Since completion of the project, the regraded areas have remained in a satisfactory configuration.

- The Present Landfill (PLF) was inspected quarterly during CY 2015. Additionally, as at the OLF, nine weather-related inspections were conducted. No significant problems were observed during these inspections.

- All RFLMA Point of Compliance analyte concentrations/activities remained below reportable levels throughout CY 2015.

- Reportable 12-month rolling average americium and plutonium activities were observed during the second half of CY 2015 in surface water at RFLMA Point of Evaluation (POE) monitoring station SW027, which is located on the South Interceptor Ditch upstream of Pond C-2. Details regarding the subsequent regulatory consultation and plan to address the reportable condition can be found in regulatory Contact Record 2015-05.

- All other RFLMA POE analyte concentrations/activities remained below reportable levels throughout CY 2015.

- The results of statistical evaluations of groundwater quality at the OLF and PLF were similar to the results of these evaluations performed for 2014.

- Water monitoring at the Present Landfill Treatment System during CY 2015 showed three analytes (arsenic, selenium, and vinyl chloride) detected above the applicable standards for individual sample results collected at the system effluent during routine quarterly sampling. The observed arsenic and selenium concentrations did not reoccur and RFLMA consultation regarding these analytes was not required during CY 2015.

 Vinyl chloride was detected above the standard in three successive monthly samples following the routine quarterly sample. In accordance with the evaluation protocols in RFLMA Attachment 2, Figure 11, “Groundwater Treatment Systems,” these consecutive results triggered consultation among the RFLMA Parties and sampling at location NNG01 (outfall of the former PLF Pond area) for vinyl chloride. NNG01 was sampled on July 27, 2015. Vinyl chloride was not detected in the sample from NNG01, and consequently the PLFSYSEFF quarterly sampling frequency was resumed. The consultation is documented in Contact Record 2015-07.

- The report Evaluation of Water Quality Variability for Uranium and Other Selected Parameters in Walnut Creek at the Rocky Flats Site (WWE 2015) was posted to the DOE Legacy Management website on April 9, 2015, and subsequently updated on September 30, 2015. This report summarized the findings from an extensive study initiated to address specific questions regarding uranium in surface water at the RFS. The study addresses the distribution, transport mechanisms, sources, and composition of uranium, in terms of its natural versus anthropogenic fractions, with a focus on the North and South Walnut Creek drainages. Other water-quality parameters related to the transport of uranium at RFS are also evaluated. The report is available at http://www.lm.doe.gov/Rocky_Flats/Documents.aspx.

- East Trenches Plume Treatment System (ETPTS) effluent water quality in 2015 reflected the most dramatic reduction in volatile-organic-compound load ever achieved at this treatment system. This was a result of the completion of the ETPTS Reconfiguration Project in January 2015. This project replaced the passive, zero-valent iron (ZVI)-based treatment
system with a solar/battery-powered active treatment system utilizing a proven, commercial air stripper.

- The Mound Site Plume Treatment System (MSPTS) continued to treat groundwater throughout CY 2015. However, the ZVI treatment media has become increasingly clogged and its effectiveness has decreased. As part of the MSPTS Reconfiguration Project, scheduled for the summer of 2016, groundwater will continue to be intercepted by the MSPTS groundwater intercept trench but then will be pumped to the ETPTS for treatment by the commercial air stripper installed there in 2014–2015.

- Treatment by the Solar Ponds Plume Treatment System (SPPTS) was limited throughout much of 2015 due to clogging of the media and plumbing in the concrete structure containing the two original treatment cells (the “Big Box”). The SPPTS Interim Reconfiguration Project, scheduled for construction in 2016, includes removing and disposing of the Big Box contents and converting it to a full-scale, test lagoon for nitrate treatment. This approach is based on the results of the Phase III pilot-scale lagoons.

- Groundwater quality data were obtained for all monitored areas in 2015 (including Sentinel well 95299, which has never before produced water for sampling). Groundwater quality and flow were generally consistent with previous years. A reportable condition was identified at well 10304 after data collected in the second and fourth quarters of CY 2015 showed concentrations of trichloroethene (TCE) at this well exceeded the RFLMA Attachment 2, Table 1 value. A surface water sample from Woman Creek was subsequently collected; no TCE concentrations were detected in this sample. The consultation is documented in Contact Record 2015-10.

- Revegetation monitoring data continued to demonstrate the establishment and sustainability of desirable grassland species at the Site.

- The annual data quality assessment showed that the Site continues to collect high-quality data sufficient for decision making.